USACERL Technical Manuscript E-91/01
October 1990

US Army Corps
of Engineers

Construction Engineering
Research Laboratory

TV L e e o etk B e L b W St T T e b e e TN, G0 e /SR S YT P ot e v -

AD-A228 443

Modeling and Nonlinear Control of a
Hot-Water-to-Air Heat Exchanger

by
David Underwood

The control of Heating, Ventilation, and Air Con-
ditioning (HVAC) systems is difficult due to the
nonlinear (open- or closed-loop) nature of the
components, the wide range of operating condi-
tions under which they must operate, and the
many interactions between them. Accurate
models of these component loops can be a great
help in evaluating the performance of controllers
and control laws, strategies, and tuning tech-
niques. While many models already exist, their
accuracy under closed-loop control is very often
more limited than under open-loop control, due to
the change in variables during a closed-loop test.

The heat exchanger is such a nonlinear HVAC
component. The practice of using linear control
on heat exchangers results in sluggish control.
This work developed a model for a hot-water-to-
air heat exchanger, accurate over a wide range
of conditions for both open- and closed-loop
simulations. The model was used to develop two
nonlinear control laws, which showed better
results than fixed linear controllers.

Approved for public release; distribution is unlimiied.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official indorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official Depart-
ment of the Army position, unless so designated by other authorized
documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

REPORT DOCUMENTATION PAGE ONB Mo ot otes

PlﬁcmﬁgN&ﬂhﬁdﬁMthmwwiWpum.w‘gunﬁmhvmmmwhgdﬁm,
gathering and maintaining the data nesded, and completing and reviewing the coliection of information. wmmmmwawmmd:ﬁ.
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorale for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Ardington, VA 22202-4302, and 1o the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Lrave Blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
October 1990 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Modeling and Nonlinear Control of a Hot-Water-to-Air Heat Exchanger PE 4A161102
PR AT23
6. AUTHOR(S) - WU EB-EB9
David Underwood
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFCRMING ORGANIZATION
REPOAT NUMBER

U.S. Amy Construction Engineering Research Laboratory (USACERL)
P.O. Box 4005 USACERL TM E-9101

Champaign, IL 61824-4005

5. SPONSORINGMONITORING AGENGY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
- e AGENCY REPORT NUMBER
USACERL

«__P.0. Box 4005
Charfpaign, IL 61824-4005
—Charmpaign, T

11. SUPPLEMENTARY NOTES

Copies are available from the National Technical Information Service, 5285 Port Royal Road,
Springfield, VA 22161.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

>\

13. ABSTRACT (Maximum 200 words)

The control of Heating, Ventilation, and Air conditioning (HVAC) systems is difficult due to the nonlinear
(open- or closed-loop) nature of the components, the wide range of operating conditions under which they
must operate, and the many interactions between them. Accurate models of these component loops can be a
great help in evaluating the performance of controllers and control laws, strategies, and tuning techniques.
While many models already exist, their accuracy under closed-loop control is very often more limited than
under open loop control, due to the change in variables during a closed-loop test.

The heat exchanger is such a nonlincar HVAC component. The practice: of using linear control on heat
exchangers results in sluggish control. This work developed a model for i hot-water-to-air heat exchanger,
accurate over a wide range of conditions for both open- and closed-loop simulations. The model was used
tr/develop tzo nonlinear controls laws, which showed better results than fixed linear controllers.

/ Cl/f_/j/,‘l"[[.

e - -
—

14, SUBJECT TERMS 15. NUMBER OF PAGES
heat exchangers, models 166
automatic control / P 16. PRICE CODE
hot-water-to-air heat exchangers , . [A DY L—

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION | 20. LITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR
NSN 7540-01-2680-5500 ‘ Swndard Form 298 (Rev. 2.89)

Preacibed by ANS| 54 230-18
200102

FOREWORD

This research was funded under Project 4A161102AT23, "“Basic
Research in Military Construction"; Work Unit EB-EBY9, "“Control For
HVAC Applications."

This manuscript was submitted in partial fulfillment of the
requirements for the degree of Master of Science in Mechanical
Engineering in the Graduate College of the University of Illinois at
Urbana—-Champaign. The University of Illinois advisor for this thesis
was Dr. Roy Crawford. Technical guidance and support were provided
by Dale L. Herron, Energy and Utility Systems Division (ES), USACERL.
Dr. Gilbert R. Williamson is Chief, USACERL-ES. The USACERL technical
editor was Mr. William J. Wolfe, Information Management Office.

COL Everett R. Thomas is Commander and Director of USACERL, and
Dr. L.R. Shaffer is Technical Director.

CONTENTS

FOREWORD
LIST OF FIGURES AND TABLES

INTRODUCTION

1.1
1.2
1.3

P
1
2
.3
4
5

(0}

w WWWWWWwwwwww X

P8

AL
4.1
4.2
4.3
4.4

WWWwwwhNdPNDNDED

=W N =

ELS

& W

Background o e e
Previous Coil Models e e e e e e e e e
New Work « . « v v v v v o o .

XPERIMENTAL HARDWARE

Description of Experlmental Setup
Airflow Rate Measurement

Water Flow Rate Measurement . e .
Air and Water Temperature Measurement
Water Flow Rate Control

Nomenclature

Coil Model

Derivation

Open— and Closed—Loop Tests

Coefficient Revisions

Revision of Model Form

Valve Model e e e e e e e e

Valve Hysteresis Check e e e e e e

Polynomial Fit

Step Response .

Control Signal and Water Flow Rate
Correlation

Complete Loop Model Controller, Valve, Coil;

Closed-Loop Simulation

INEARIZED SYSTEM

Linearization of the Co;l Model
Linearized Valve

Root Locus

Design Criteria

ROPORTIONAL-ONLY NONLINEAR CONTROL

Nomenclature
Calculation of Kp vs Water Flow Rate
for 25 Percent Overshoot

Proportional Gain as a Function of Water Flow

Rate. .
Proportional Galn as a Functlon of Setpolnt
and Inlet Air Temperature . .
Implementation of the Setpomnt—Dependent
Proportional Gain Nonlinear Controller
on the Test Facility

Page

11
11
11

12

13
13
13
21
21
21

24
24
25
25
27
29
31
35
35
38
40

40
48
48
48
50
50
51

57

57
62
71

82

CONTENTS (Cont’d)

Page

6 SUMMARY AND CONCLUSIONS e e e e e e e e e e e e e e 95
APPENDIX A: Software Description 96
APPENDIX B: Program Listings 99

fccession For

BTIS @QRA&I %
oG DTIC TAB
X Unannounced 0
o Justification . |
=3
By
Distribution/

Availability Codes
Avail and/or
Dist Special

3.9
3.10

3.11

FIGURES

Test Facility « .+ « . .
Venturi Circuit Diagram

Venturi and Hot Wire Anemometer Associated
Ductwork e e e e e

Hot Wire Anemometer and Venturi Measurements
vs. Time e e e e e e e e el e

Hot Wire Anemometer Measurement With Anemometer
Upstream and Downstream of Coil vs. Time

Thermocouple Array Arrangement Diagram
Water Flow Rate Control and Measurement Diagram

Capacitance Representations of Two Different Coil
Models

Prediction of Discharge Air Temperature for
the Original Model During an Open-Loop Test

Discharge Air Temperature Measured and Predicted
During a Closed-Loop Test

Full Mixing of Air Passing Through the Coil
Partial Mixing of Air Passing Through the Coil

Revised and Original Model Discharge Air
Temperature Prediction Comparison

Water Flowmeter Signal vs. Control Signal

Polynomial Fit of Water Flowmeter Signal and
Control Signal

Water Flow Rate vs. Control Signal Step

Measured and Predicted Water Flow Rate During
Closed-Loop Control

Block Diagram of the Dlgltally Controlled Hot
Water Coil . . e e e e e

Page
14

16

17

19

20
22
23

26

28

30
32
33

36
37

39

41

42

43

Number

Simulation of the
Hot Water Coil;

Simulation of the
Hot Water Coil;

Simulation of the
Hot Water Coil;

Root
at

Root
at

Root
at

Root
at

Root
at

Locus
Water

Locus
Water

Locus
Water

Locus
Water

Locus
Water

FIGURES (Cont’d)

of Linearized Coil
Flow Rate of 0.063

of Linearized Coil
Flow Rate of 0.126

of Linearized Coil
Flow Rate of 0.189

of Linearized Coil
Flow Rate of 0.252

of Linearized Coil
Flow Rate of 0.316

Proportional-Only Controlled
Kp = 100 cO/°C; T

= 50 °C

sp

Proportional-Only Controlled
Kp = 205 Co/°C; T

= 50 °C

sp

Proportional-Only Controlled
Kp = 410 CO/°C; T,, = 50 °C

sp

and Valve Models
L/s

and Valve Models
L/s

and Valve Models
L/s

and Valve Models
L/s

and Valve Models
L/s

Simulated Discharge Air Temperature Using
the Nonlinear Coil Model Producing a
25 Percent Overshoot at a Nominal Water
Flow Rate of 0.063 L/s

Proportional Gain vs. Water Flow Rate for
25 Percent Overshoo

Steady State Coil Gain vs. Water Flow Rate for
the Four Cases of Table 5.1

Curve Fit of the Base Case KpKv vs. Water Flow
Rate for 25 Percent Overshoot

Simulated Discharge Air Temperature Using Linear
and Nonlinear Control; SP, = 45 °C;

Base Case of Table 5.1

Water Flow Rate Resulting From the Simulation of

Linear and Nonlinear Control; With Ky = 104
CO/°C and K,, From Equation 5.4,

dsP = 5 °C;

Page

44

45

46

52

53

54

56

60

61

63

64

66

68

Number

FIGURES (Cont’d)

Simulated Discharge Air Temperature Using
Linear and Nonlinear Control; SP, 45 °C;
O0SP 5 °C; Base Case of Table 5.1;
Controller Bias = 1591 e e e e e e e e e

Simulated Discharge Air Temperature Using Linear
and Nonlinear Control; SP, = 45 °C; 0SP = 5 °C;
Base Case of Table 5.1 e e e e e e e e e

Simulated Discharge Air Temperature Using Linear
and Nonlinear Control; SP, 45 °C; dSP 5 °C;
Base Case of Table 5.1; K, = 105 CO/°C ..

Simulated Discharge Air Temperature Using Linear
and Nonlinear Control; SP, = 45 °C; dSP = 5 °C;
Base Case of Table 5.1; K, = 105 C0/°C R

Simulated Discharge Air Temperature Using Linear
and Nonlinear Control; SP,= 35.71 °C;
dSP = 1.09 °C; Base Case of Table 5.1;
K, = 349 co/°C e e e e e e e e e

Simulated Discharge Air Temperature Using Linear

Control for a Setpoint Upset From 32 °C to 52 °C;

Base Case of Table 5.1; K, = 690 C0/°C

Simulated Discharge Air Temperature Using Linear

Control for a Setpoint Upset From 52 °C to 32 °C;

Base Case of Table 5.1; K, = 310 CC/°C

Multiplicative Curve Fit for Two Proportional
Gains and Setpoint Minus Inlet Air Temperature

Simulated Discharge Air Temperature Using Linear
and Nonlinear Control; SP,= 32 °C; 8SP = 20 °C;
Base Case of Table 5.1 e e e e e e e e

Simulated Discharge Air Temperature Using Linear
and Nonlinear Control; SP,= 32 °C; 86SP = 20 °C;
Base Case of Table 5.1 e e e e e e e

Simulated Discharge Air Temperature Using Linear
and Nonlinear Control; SP, = 50 °C; 8SP = 5 °C;
Base Case of Table 5.1 e e e e e e

Simulated Discharge Air Temperature Using Linear
and Nonlinear Control; SP, = 40 °C; 8SP = 5 °C;
Base Case of Table 5.1 e e e e e e e

Page

69

70

12

73

74

17

78

79

80

81

83

84

Number

FIGURES (Cont’d)

5.19 Measured Discharge Air Temperature for a Control

5.

Al

.20

.21

.23

.24

.25

26

Signal Step From 1700 to 400 e e e e e e

Measured Discharge Air Temperature for Linear
Control on Test Facility; SP, = 35 °C;
dSP = 15 °C; K, = 300 Co/°C ..
Measured Discharge Air Temperature for Linear
Control on Test Facility; SP, = 40 °C;
dSP = 10 °C; K, = 600 co/°c
Measured Discharge Air Temperature for Linear
Control on Test Facility; SPy, = 40 °C;
dSP = 10 °C; K, = 500 Co/°C ..

Measured Discharge Air Temperature for Linear
Control on Test Facility; SP, = 45 °C;
dSP = 5 °C; K, = 350 CO/°C .

Measured Discharge Air Temperature for Nonlinear
Control on Test Facility; SP, = 45 °C;
dSP = 5 °C; K, = Eq. 5.5 e e

Measured Discharge Air Temperature for Nonlinear
Control on Test Facility; SP, = 35 °C;
0SP = 15 °C; K,y = Eq. 5.5 . e

Measured Discharge Air Temperature for Linear and
Nonlinear Control on Test Facility; SP, 35 °C;
dsP 5 °C; K, = 310 Cco/°C e e e

Flow Diagram of Matlab Program DSTEST.M.

Page

85

86

87

88

89

91

92

93
98

TABLES

Number Page
2.1 Test Facility Equipment List o X
5.1 Four Steady-State Conditions Used for Calculation

of Nonlinear Control Law e e e e s o e o « « . . 58
5.2 Proportional Gain for 25 %0S for the Base Case . . 59

o8
3

MODELING AND NONLINEAR CONTROL OF A
HOT-WATER-TO-AIR HEAT EXCHANGER

1. INTRODUCTION

1.1 Background

The control of Heating, Ventilation, and Air Conditioning
(HVAC) systems is difficult due to the nonlinear nature of the
components, the wide range of operating conditions under which they
must operate, and the many interactions between them. Accurate
models of these loops can be a great tool in evaluating the
performance of controllers and in particular control laws,
strategies, and tuning techniques. While many models already
exist, their accuracy under closed-loop control is very often
limited as compared to open loop accuracy due to the change in
variables during a closed-loop test.

One component in particular, the heat exchanger, is nonlinear
in nature. The general practice of using linear control on this
nonlinear component results in sluggish control. The goal of the
work presented here was to accurately model a hot-water-to-air heat
exchanger loop and to use this model to develop a nonlinear control
law with a minimum number of tuning parameters.

1.2 Previous Coil Models

Previous work! has been done at the University of Illinois on
modeling hot-water—-to—-air heat exchangers. Nesler modeled the
dynamic response of the heating coil as a nonlinear (coefficients
as a function of operating point) first-order differential equation
plus dead-time lag equation. The steady-state response was derived
from experimental tests performed about a fixed operating point
(inlet water temperature, inlet air temperature, and airflow rate
fizxed). This resulted in an expression for the dynamics of the
discharge air temperature about a single operating point which was
dependent solely upon the water flow rate.

While Nesler’s model provided insights to stability limits
about a single operating point, it lacked accuracy and the ability
to explore dynamics at other operating points. Rohrer refined
Nesler’s model to achieve more accuracy by defining the effect of
the operating point and water flow rate on the time constant and

! p.G. Ghassan, Design and Simulation of a Heating Coil, Master of Science Thesis
(University of Illinois, Urbana, 1985); C.G. Nesler, Direct Control of Discharge Air
Temperature Using a Proportional Integral Controller, Master of Science Thesis
(University of Illinois, Urbana, 1983); C.E. Rohrer, Digital Control of Discharge Air
Temperature Including Z-Transform Analysis, Master of Science Thesis (University of
Illinois, Urbana, 1985).

11

dead-time of the coil. He also investigated an additional
operating point having an airflow rate 60 percent of that of the
original.

Ghassan developed an analytical model for a one-—row, two-pass
cross flow hot water coil and compared it with experimental data.
The comparison consisted of open-loop upsets of water flow rate,
inlet water temperature, and air flow rate step changes. This work
provided additional information on the open-loop dynamic response
over a wider range of operating conditions, but did not explore
closed-loop response.

1.3 New Work

While the work by Nesler, Rohrer, and Ghassan provided
insights to the characteristics of hot water to air heat
exchangers, the model’s accuracy under closed-loop control was not
thoroughly investigated. Nesler and Rohrer investigated some
aspects of closed-loop stability about two operating points, but
their work cannot be easily extended to other conditions. While
Ghassan’s model is more general and applicable to a wider range of
operating conditions, his model’s accuracy under closed-loop
control was never verified. Although some work was done by Rohrer
regarding sampling time and PI control, very little has been done
concerning the tuning process. This work addresses both closed-
loop accuracy and the tuning process. First a model accurate for
both open and closed-loop conditions was developed and then a
nonlinear control law with a single tuning parameter was developed.
This involved the following steps:

1. Study the noise characteristics of the sensors used, and
where appropriate, filter the analog signal or install a new
sensor.

2. Develop software for data collection, analysis, and
simulations.

3. Produce an accurate model of the heat exchanger for both
open and closed-loop simulations for inlet air temperature changes,
air flow rate changes, inlet water temperature changes, and water
flow rate changes.

4. Develop a nonlinear control law with one tuning parameter.

12

2. EXPERIMENTAL HARDWARE AND SOFTWARE

2.1 Description of Experimental Setup

Figure 2.1 shows the experimental setup used for data
acquisition and control of the hot water temperature to air heat
exchanger. Water flow rate was controlled by computer through a
Metrabyte DAS-16 D/A board, EXP-16 multiplexer and filtering board,
a Honeywell RP7517B1016-1 E/P transducer, and a Honeywell model
V5011A two way valve with a pilot positioner. The heat exchanger
is a McQuay, four-row hot-water-to-air heat exchanger. The hot
water, supplied by a steam—-to-hot-water heat exchanger, was
controlled independently of the rest of the test facility. The
combination of electric heaters in the inlet -~ir duct, a valve to
mix unheated city water with heated water, in.2t air dampers, and
the control valve, all interfaced to the PIO-12 relay board,
allowed computer control of the four variables affecting the
process variable (outlet air temperature). Table 2.1 lists the
major components of the test facility along with a short
description.

2.2 Airflow Rate Measurement

The airflow rate was initially measured with a Sierra model
432, hot-wire anemometer (HWA) placed at a point representative of
the average velocity. Initial measurements with the HWA
measurement were noisy and varied with air temperature, so the
circuit of Figure 2.2 was constructed to accommodate airflow rate
measurement with a venturi through the computer. A detail of the
HWA, venturi, and the associated ductwork is seen in Figure 2.3.
The empirical correlation between the HWA’s output voltage and the
air velocity is given as Equation 2.1.

Vaa = =0.1 + 1.32 E, - 0.8534 E;? + 1.27049 E,* (2.1)

The analytical correlation for the venturi, obtained from
Bernoulli’s Equation, after scaling to account for different duct
cross-sectional areas is given as Equation 2.2, where the air was
assumed to be an incompressible fluid and its density a function of
temperature.

13

"A3TTTORF 3s°O3

O, LHILYM ALID -

>~
\

SH31V3H
OlH10313

—_—
—

H3dWva
O14 HIV

"TI°Z °eanbrg

dind

NYUNL3Y 3LYSNIANOD

2i-old

agvod
1Nd1No

i —
”@l >
——
" walyaH
0 H3ivm
IATVA HILVM ALID Q =
A'l' A Y
3ATVA » ————
T F._ OHINOS Alddns WvaLs
N MOT3 H3LVM
(—— ————
— — — __ IHNULN3A m
H]
109 HALINOWINY
:mosamzm._mm _W_ HILYM LOH JHIM LOH
AVHHY
F1dNOOOWHIHL
[]
! | [
ATIVNHILNI 91-dX3 [
Q3TIVLSNI WZL
SQHYOf Z1-old preog AL
ANV 91-SVQA HLIM HIONASNVHL feuluLe | '
0€ 13QOW 28d WaI MOTH HILYM ’

14

Table 2.1

Test Facility Equipment List

Component Description
Pump Bell and Gosset (1/3 hp), 1725 rpm
Fan 10" outside radius centrifugal
Duct 21" x 15" rectangular
hot Water Coil McQuay Model G, 21" x 15", 4 row
Control Valve Honeywell, Model V5011A11061 8432
Electric Heater 5 and 10 Kw
A/D board Metrabyte DAS-16, 12 bit, -5v to +5v
input
Computer IBM PS/2 Model 30
Venturi Pressure
Transducer Setra Model 432, 0 to 1"wc
E/P Transducer Honeywell, Model RP7517B1016~-1
Hot Wire Anemometer Sierra, Model 432
Thermocouples Type T, copper—-constantan
Venturi 10" to 8" diameter
Water Flow Meter Flow-Tech turbine Model FM-AC
Hot Water Valve MP 953E 1319 8536, normally open
Ve = 0.072 [T,E,]%° (2.2)
where
Vhwa = Air velocity (meters per second) at section 1 of

Figure 2.3 measured by hot wire anemometer

Vvnt = Air velocity (meters per second) at section 1 of
Figure 2.3 measured by venturi

Eh = Voltage (volts) measured from HWA

Ev = Voltage (volts) measured from venturi pressure
transducer

Tao = Air temperature (R)

The HWA correlation was derived from the principle that the
convective heat transfer rate of a heated element exposed to a
moving airflow is dependent upon, among other things, that
airflow’s velocity. A fixed amount of electrical energy is
supplied to an element exposed to the fluid whose velocity is to be
measured. The temperatures of this element and the temperature of
the unheated fluid are measured. For a correlation between the
temperature differential and fluid velocity to be accurate, the
other effects such as density, humidity, and fluid temperature on

15

33 Pin Connector

ce

6t

AvC O1 61

<
N

AVe

‘wexbETP JITNOITO TIANJUSA

N0

*2°Z oanbra
IS “__
Aiddng
OO0 W . somog
TH00L Ave +
—A\W
+—\W J
(6),[0[0]%
).>>>\ leonpsuel]
eJnsseld
OM001L AS - 0 Now Lwﬂi I
puo

sde] einsseld UMuea

16

*3IOMIONP POJBTOOSSE IOJSWOWSUER SITM JOY PUB TINJUIA °"€°Z oanbrg

S X, 12 Fenbuejoey

L

N

100

Jejsuiowietie
84IM
oy

lejewelp 01

] — C — P

Jejewrep 8

i} € P

17

the convective heat transfer rate must be taken into account,
making the instrument’s accuracy susceptible to changes in any of
these parameters. In order to assess the HWA’s ability to
compensate for changes in some of these factors, airflow rate
measurements were recorded at 5-second intervals for both the HWA
and a venturi while air velocity, inlet air temperature, and inlet
water temperature were varied. The airflow rate was first stepped
up and then down at 2 and 10 min respectively as labeled in Figure
2.4 by "Dampers Close" and "Dampers Open." Next the inlet air
temperature was first stepped up and then down by turning electric
heaters in the air duct on and off at 18 and 27 min respectively
as labeled in Figure 2.4 by "15kW On" and "15kW Off."™ The inlet
water temperature was stepped down and then stepped up at 35 and 43
minutes respectively, as labeled by "CW Open" and "CW Closed,"
referring to the opening and closing of the city water valve
allowing unheated water into the water supplied to the hot water
coil as shown in Figure 2.1. Although it is reasonable to expect
the capacity of the fan to be partially dependent on air
temperature, the changes measured by the HWA during the inlet air
temperature upset at 18 and 27 min seemed excessive. The venturi
reading remains relatively stable as compared to the HWA reading.
Both instruments contain noise, but the venturi’s noise level is
much smaller than that of the HWA. While the venturi measurement
does reflect a change in airflow when the inlet air temperature
changes at 18 and 27 min, the reading reaches a new value and

remains near that value. The HWA however, overshoots the new
value, eventually manages to compensate, and also reaches a new
value.

This variation in the airflow velocity measurement could be
from either turbulence in the airstream or electronic noise.
Either source of variation was undesirable. Although both the HWA
and venturi signals were filtered with a passive, low-pass RC
filter with a time constant of 0.8 s, a significant noise level
persisted for the HWA. At first, it was thought that moving the
sensor upstream of the coil would reduce the variation of airflow
measurement for changes in inlet water temperature and water flow
rate changes, so measurements were taken with the HWA upstream of
the coil, again at 5 s intervals. Figure 2.5 shows the HWA
measurement both upstream and downstream of the coil. Not only is
the magnitude changed significantly, but the signal to noise ratio
is smaller downstream of the coil. There are at least two possible

explanations. First, the coil may decrease the turbulence.
Second, it may act as a sort of buffer of temperature change in air
temperature. That is, the temperature of the air changes more

slowly downstream of the coil than it does upstream.

The most critical aspect of the air velocity measurement was
the dynamic changes. Since the noise of the HWA measurement was
much larger than that of the venturi, these tests prompted the use
of the venturi for all subsequent tests.

sh

‘2WT3 ‘SA SJUSWOINSESW TINJUSA PUR IDJDWOWSUR SAITM JOH "V’ oanbTa

em UA
A — A —

(seinuIn) ewnt

0s ov o€ 02 oL 0
oo.v] 1 1 N
oSt N
00§ - L g2
0SS | u
009 < . ¢ Z
<
o
- S
059 n g
3

00Z - }2/72//3%% 572,22 gn g€
- ..

0S8 -

006 184

pesoid uedQ 3O uo uedo 050D
MO MO MIS | MIASE siedureq siedweq

19

*?WT] °"SA TROD
FO WESI3SUMOP Pue WedI3jsdn JIO9JSJWOWSUR YITM JUSWSINSESW IIJSWOWSUER ©ITM JO0H "G°Z oInbtg

wreessumog weensdy ——

(seynuin) ewiy

0s ob oe oc Ot 0
008 f 1 I poi 8

A

emy

ot

Uy
g
]

(s/w)

006 peso|D uedo 3O uo uedQ es0|D o
MO MO MWISLE NS L siedureq siedureqg

2.3 Water Flow Rate Measurement

The water flow rate was measured with a Flow-Tech Model FM-AC
turbine flowmeter with a rating of 0.54 L/s to 1.13 L/s (1.5 gpm to
18 gpm). This signal, like the airflow rate measurement, had a
significant amount of high frequency noise and was filtered with a
passive, low-pass, RC filter with a time constant of 0.8 s.

2.4 Air and Water Temperature Measurement

The air temperature measurements were performed with type-T
thermocouple arrays wired in parallel, arranged in the duct as
shown in Figure 2.6. This signal, which was first processed by the
EXP-16 board, did not have a significant amount of noise.
2.5 Water Flow Rate Control

The water flow rate was controlled by computer through a 12

bit D/A converter (-5V to +5V analog range) and voltage to pressure
(E/P) transducer as shown in Figure 2.7.

21

Figure 2.6.

445 -1
267 —P
" I.TBQ
4 e 5 |
A V¢
191 g §
mi % %
1) H [- 1
v Y Y
o ¢ U

Thermocouple Junction (9 total)

Dimensions in mm

Thermocouple array arrangement diagram.

22

‘wexbeTp JUSWSINSEOW PUR TOIJUOD BJBI MOTF IBJEM

(et

leonpsuel)
d3

M
w Joyentoy
- el — onep
M3 1016 M) oiewenud
uonisod oAA
1euonisod
- joid

bligiel @)
eoepeu|

*L°Z ®anbra

o |/OAU0D

v/a

020

23

3. MODELS

3.1 Nomenclature

The following nomenclature was used in the development of the
models:

Coa = Constant pressure specific heat of air

Cow = Constant pressure specific heat of water

Coe = Constant pressure specific heat of coil

mg,, = Mass of coil assumed at an average temperature
equal to outlet water temperature

m, = Mass of coil assumed at an average temperature
equal to outlet air temperature

T,y = Inlet air temperature

T,, = Discharge air temperature

T,y = Inlet water temperature

Too = Outlet water temperature

T, = [Tos + Tyol/2

m, = Air mass flow rate

ﬁw = Water mass flow rate

C. = Cocllcy

C, = CpeMea

vA = Overall heat transfer coefficient

cCoO = Control signal in terms of 12 bits (range 0 - 4095)

Ty = Setpoint temperature of controller

K, = Proportional gain of controller

24

3.2 Coil Model
3.2.1 Derivation

In this work, a coil model similar to the one Ghassan
developed was proposed. The main difference between Ghassan’s
model and this model was the representation of the coil
capacitance. As seen in Figure 3.1, while Ghassan assumed that the
derivative of the average coil temperature was equal to that of the
outlet water temperature, here the capacitance was broken into two
terms as stated in assumptions 5 and 6 listed below. The remaining
assumptions were identical to Ghassan’s.

The assumptions made for this model were:

1. The tube, water, and air have constant specific heats
throughout the tube length and over the ranges of temperature
encountered.

2. Densities are constant.

3. There 1is negligible heat conduction in the axial
direction.

4. The effective air temperature to be considered for
convective heat transfer purposes is the inlet air temperature at
any cross section.

5. The derivative of the temperature change of m,, is equal to
that of the outlet air temperature.

6. The derivative of the temperature change of m, is equal to
that of the outlet water temperature.

7. The mean temperature difference between the two fluids
driving the overall heat transfer UA is the difference of the inlet
air temperature and the average water temperature.

Energy balance equations were formed using the above
assumptions. The water side energy balance results in Equation 3.1
and the air side energy balance gives Equation 3.2.

My (£) Cpy [Ty (£) = Tyo(E)] + UA(E) [Ty (£) - Ty(t)]

Il

Co AlTwo (t)]
dt
(3.1)

M, (£) Cpa [Tay (£) = Tpo(t)] + UA(E) [To(t) — Ty (t)]

Ca ATy (t)]
dt
(3.2)

25

*STOPOW TTOD JUSBIDIITP OMJ JO suorjejuasaxdex souezroede) ‘1°g eanbrg

26

Approximating the overall heat transfer as in Equation 3.3 and
using the forward rectangular rule for discrete approximation to
obtain a finite difference equation from Equations 3.1, 3.2, and
3.3, results in Equations 3.4 and 3.5.

UA(t) = a + br,(t) + dm,(t) (3.3)
Too(k) = To(k-1) + Am,(k=1) [T (k=1) - T, (k=1)]

+ [B + Cm,(k-1) + Dm,(k-1)] [T, (k=1) - T,(k-1)] (3.4)

T..(k) = T, (k-1) (3.5)
+ Em, (k=1) [Ty (k=1) = Th(k-1)]

+ [F + Gm(k-1)1 + Hm, (k-1)1[T,(k~-1) — T, (k=1)]

where
A = C, At/c, E = Cp. At/C,
B = a At/C, F= a At/C,
C = b At/C, G= b At/C,
D = d At/C, H= d At/C,
At = sampling interval

3.2.2 Open—- and Closed-Loop Tests

The first test for model adequacy was an open loop-test.
Here, an open-loop test was defined as a test in which the input
variables T,, T,, M, were ramped from an initial value to a second
value as quickly as the hardware allowed and water flow rate
remained constant. The ramping of the airflow rate and inlet air
temperature were quick as compared to the 5-second sampling
interval, while the ramp of the inlet water temperature was
somewhat slower. The measured values of inlet water temperature,
inlet air temperature, water flow rate, and airflow rate were then
used in computer simulations using the difference Equations 3.4 and
3.5 to predict T,, and T,,. These predictions were then plotted
along with the measured T, and T,, in Figure 3.2. Here, the airflow
rate was first stepped up and then down at 2 and 10 min
respectively as labeled in Figure 3.2 by "Dampers Close" and

27

3593 doot--uado

ue Huranp Topow Teurbrao 9yl 03 °oxnjersdwol ITe BHIBYOSTP FO UOTIDTIPII4 °Z°€ oanbra
peyoipeid peinseey
(seynui) ewy
oS 10,4 oc 0
6 — i 1 1 1] se
N
vOL , L ob
157 % — Gb
-
QD
. o
mn e
L ©
CCl Tl —r . P_ ~ 0S
ek — ‘ — S5
obt — - 09
peso|n uedp HO uo uedoO es0|D
MO MO MISE ANISE stedureq sszedureq

28

"Dampers Open." Next the inlet air temperature was first stepped
up and then down by turning electric heaters in the air duct on and
off at 17 and 27 min respectively, as labeled in Figure 3.2 by
"15kW On"™ and "15kW Off." The inlet water temperature was stepped
down and then up at 35 and 43 min respectively, as labeled by "CW
Open" and "CW Closed," referring to the opening and closing of the
CW valve allowing unheated water into the water supplied to the hot
water coil (Figure 2.1). The coil model predicts the effects of
inlet water temperature, inlet air temperature, and airflow rate on
the outlet air temperature very well when only one variable changes

at a time.

The next step to test the coil model was a closed-loop test
similar to that of the open-loop test. However, during this test
proportional—-only control was used to modulate the water flow rate
according to Equation 3.6.

CO(k) = K,[T,,(k) — T, (k)] + bias (3.6)

Additionally, a setpoint upset was introduced in addition to those
of the open-loop test. The setpoint was stepped from 40 °C to 45
°C (104 °F to 113 °F) at 52 min and back to 40 °C (113 °F) at 58 min
as labeled by "setpoint +5" and "setpoint - 5" in Figure 3.3. The
closed-loop data were predicted less accurately than the open-loop
test. The prediction of Tao for the open loop response shown in
Figure 3.2 had an average absolute error in predicting the outlet
air temperature of 0.16 °C (0.29 °F). The closed-loop test, shown
in Figure 3.3, had an average absolute error in predicting outlet
air temperature of 0.82 °C (1.48 °F). These disappointing results
were observed for several other open- and closed-loop test data and
found to be repeatable.

3.2.3 Coefficient Revisions

Because of these deficiencies in closed-loop prediction of T,,,
several revised models were proposed and fit to data. The initial
revisions involved attempts to more accurately represent the model
coefficients. First the coil capacitance coefficients (C, and C,)
were studied. Figure 3.1 seems to indicate that it would be
reasonable to expect that m,, the portion of the coil at an average
temperature equal to the outlet water temperature, would be larger
for high water flow rates and lower for low water flow rates. 1In
other words, the dashed line in that figure would increase in
diameter as water flow rate increased. Similarly, as airflow rate
increased, the diameter of the dashed line would decrease the
second revision explored was the effect of the continuous to
discrete approximations. Use of the backward rectangular rule
approximation was compared with the forward rectangular rule. The
results indicated that the original model was more accurate than
the revised models.

29

‘3593 dooT-pesoTo ® Hurtanp pejzorpexd pue peansesw 8xnjexedwel xte abixeyosrtq

98

S6

+0l

12 33

(<43

I9POW reuibuQ Ag pejolpe.d peinseeiN
(seynuin) e
09 ot oc o
] I 1
- r& , |
| d
G- G+ pesoID uedo 3O uo vedQ ©s0|D
uodyeg juiocheg MO MO siedweq siedweq

MOSE MMSE

oe

1>

1°14

0s

"g€°g ®anbrta

(0 oel

30

3.2.4 Revision of Model Form

Because the revisions to the original model mentioned 1in
section 3.2.3 failed to improve its accuracy, it was felt that some
basic characteristic of the coil was missing. This necessitated a
change in the approach, to improve the model. While the previous
revisions of section 3.2.3 were attempts to more accurately
represent the coefficients of the model, the model form remained
the same. The absence of a basic characteristic may require a
different model form, with extra or different terms. Several
versions of a model using the effectiveness vs. Number of Transfer
Units (NTU) relationship were derived, but like previous revisions,
were found to be no better than the original model. The upset
which the original model of section 3.3 had the greatest difficulty
modeling (Figure 3.3), was an inlet air temperature change. The
model reacted much too slowly to the step change in the inlet air
temperature, Tai. When Tai changes quickly, the measured outlet
air temperature changes nearly instantly, and continues to change
gradually. Although the original model prediction, described by
Equations 3.4 and 3.5, changes gradually upon inlet air temperature
disturbances, it does not have the immediate initial response seen
in the experiments. This observation led to the addition of a term
to the original model on the premise that there existed a cross-
sectional area of the coil in which the passing air is not directly
affected by the forced convection heat transfer. This extra term
would therefore not be dependent upon the coil dynamics, but would
be a feed-forward term. The original model assumed the situation
depicted in Figure 3.4, which misses the true dynamics depicted in
Figure 3.5. While most of the air flowing past the coil
participates in the convection heat transfer (airstream 2), a small
percentage of it (airstream 1) does not get heated until after it
gets downstream of the coil and mixed with airstream 1. Assuming
that the two thermocouple arrays have the same dead-time and time
constant, the change sensed at the outlet thermocouple array due to
a change in inlet is equal to the change in inlet air temperature
delayed by the time required for the airstream to travel the duct
length. At the lowest velocity of 2.0 m/s (6.7 ft/s) encountered
on the test facility, the 0.3 m (1 ft) of duct length from the
inlet to outlet thermocouple arrays is traveled in 0.15 s, small
compared to the 5-second sampling interval. An energy balance of
the unmixed and mixed airstreams, assuming the zero step delay,
yields Equation 3.7,

MaCpa [Ty — Tyl + M,CpalT, = To) = [ni, + My2] Coa[Tao = Tarl
(3.7)
and canceling C,, and rearranging results in Equation 3.8:
Too = [Ma/m,)T; + [Iﬁgz/fﬁa]Tz (3.8)

= R,T, + R,T,

31

*TTOO 8Yy3 ybnoayjz Hurssed xte o Hurxtw TINI P € wnnm..n.m.

uinlas pue Aiddns
Jayem 104

YAVAVAVA 0

JUULUL o

YAVAVAVA o
VAVAVAS

(A
|~
(A
)

*'AAA

Aele [iOD Jayem j0H Aese
ajdnooowiay | s|dnooowuay |

32

*TTOF 9yl ybnoays Hurssed ate 3o Hurxtw Terzaed G-g @anbrg

winje/Addns
Jejem JoH
N1 /1 DD?J&@Q&I :
w . b T T JUULU cgwesnsny || =
= 2L fﬁ DD\J ¢ weansiy |
ﬁ -} i [WIesIIsIy o
Aelry ejdnooouieyy | Aery eidnooousey

1epN0O jejuj

Writing this in the finite difference form for T, (k) and
T,o(k-1) gives:

Too (k) = Tpolk=1) = Ry[T,(k) - T,(k-1)] + R,[T,(k) - T,(k-1)]

(3.9)
where

m, = air mass flow rate associated with airstream i of
Figure 3.5 downstream of coil

T, = temperature of air associated with airstream i of
Figure 3.5 downstream of coil

Rl = n.lal/n.la

R2 = fﬁaz/fﬁa

m, = m, + ma2

Noting that T,, of Equation 3.5 represents T, of Equation 3.8 and
m, is m,,, Equation 3.5 can be rewritten as Equation 3.10.
T,(k) = T,(k-1) (3.10)
+ Enmi,, (k=1) [T, (k=1) = T,(k-1)]
+ [F + G, (k=1] + Hr,(k-1)][T,(k-1) - T, (k-1)]
Substituting Equation 3.10 into 3.9 and rearranging results in
Equation 3.11.
Tao (k) = Tpo (k1) (3.11)
+ B, (k=1) [T, (k=1) - T, (k=1)]
+ [P’ + G'mi,(k-1)] + H'm (k-1)] [T, (k-1) - T, (k-1)]
+ L7 [T, (k) - T, (k-1))
Substituting the correct air mass flow rate into 3.4 results in
Equation 3.12.

Tuo (K) = Tyo(k=1) + Am, (k=1) [Ty (k=1) - T, (k=1)]

+ [B + Cm,(k-1) + D’'ma(k-1)][T, (k-1) - T,(k-1)]

34

(3.12)

where
T,, = air temperature sensed at the averaging outlet
thermocouple array
D’ = R, G’ = R,G
E’ = RE H' = RE
F' = R,F I’ =R,

énd A, B, C, D, E, F, G, and H are as they were for Equations 3.4
and 3.5.

Equations 3.11 and 3.12 were used to simulate closed-loop
control, which was compared with the measured response. Inlet air
temperature, inlet water temperature, airflow rate, and water flow
rate as measured on the facility, were used in the simulation whose
results are shown in Figure 3.6. Here, the inlet air damper closed
at 2 min and opened at 5 min and the 15 kW heaters in the inlet air
duct were turned on at 10 min and off at 15 min. The added term
significantly improved the accuracy of the model for inlet air
temperature changes.

3.3 Valve Model
3.3.1 Valve Hysteresis Check

A test was run on the D/A converter, E/P transducer, valve,
and pilot positioner as a unit to check that the pilot positioner
(a2 device often installed on pneumatic actuators which wuses
position feedback to match actuator stroke with the pneumatic
control signal) did in fact decrease hysteresis to a negligible
value. Figure 3.7 shows the signal received from the water flow
meter vs. the signal sent from the computer to the E/P transducer
through a 12-bit D/A convertor. The test began with a (control
signal) CO of 500, which was increased in increments of 10 until it
reached 1800, with a 5-second delay between each increment. CO was
then similarly decreased in increments of 10 until CO reached 500
again. The thin line represents the increasing control signal and
the thicker line represents a decreasing control signal. The
voltage measured from the flowmeter was nearly identical for both
the opening and closing stroke of the valve, indicating that
virtually no hysteresis existed.

lepopw Pesiney -+ Peinseepy
(sseynumy) oLy

St

*TeubTs TOaIjUOD °"SA TeUDLTS I930UWMOTIF I93eM 'L € aanbtg

umop Q0 —— dn Q0 =

(seop - 0 eBuUeY) 0D
00S | 0001} 00§
| 1 |] 1 | 1 1 1 | 1 | O
- O
7
- ON o
m
-
3
S
S w

3.3.2 Polynomial Fit

The water flowmeter used has an analog needle output reading
in GPM, which was read for several steady state conditions and used
to correlate the voltage read from the water flowmeter (E,) with
water volumetric flow rate, Q, (L/s) as in Equation 3.13.

Q, = 0.0082 + 0.00707Ew (3.13)

A third order polynomial, Equation 3.14, was fit to the data of
Figure 3.7 in the range CO 600 to 1400, corresponding to a water
volumetric flow rate range 0.341 L/s to 0.095 L/s (5.4 gpm to 1.5
gpm), to correlate CO and E,, measured in millivolts.

E, = a,+ a,[C0] + a2[C0]? + a3[C0]3 (3.14)

The accuracy of this polynomial fit, as shown in Figure 3.8, was
very good. Because the flowmeter was rated only down to 0.095 L/s
(1.5 gpm), measurements below that cannot be considered accurate.
Equations 3.13 and 3.14 were combined and the resulting mass flow
rate, as a function of control signal and assuming a constant
density, is given as Equation 3.15.

n, = R; + R,E, (3.15)
where

E, = Voltage (millivolts) read from water flownmeter

Q, = Water volumetric flow rate (L/s)

m, = Water mass flow rate (kg/s)

a, = =-41.29

a, = 0.30932

a, = =3.2681 x 107

a; = 9.56 x 1078

R, = 0.008 kg/s

R, =

0.00703 kg/s/mv

‘Teubts Toxjuod pue TRUDTS I939WMOTF I83eM JO 3JITF TeTwoudtog

pepIpesd

o0

oort ooct 0001

pemsespy

‘8°€ @anbra

(snonmw)™y

39

3.3.3 Step Response

Figure 3.9 shows the time response of the measured water flow
rate, sampled once a second, to two control signal (CO) step
signals in opposite directions. At 10 s, CO is stepped up from 650
to 1250, and at 20 s CO is down from 1250 to 650. Since the
previous simulations using 5-second sampling intervals showed good
prediction of outlet air temperature, and the step response of
water flow rate showed a time constant of less than 5 s, the valve
response can be reasonably approximated as a pure time delay of one
time step for analysis and simulation purposes.

3.3.4 Control Signal and Water Flow Rate Correlation

The measured and predicted water flow rate using Equation 3.14
and a one-step delay is shown in Figure 3.10. Here closed-loop
control with step airflow rate changes and inlet air temperature
were recorded at 5-second intervals with step disturbances in inlet
airflow rate and inlet air temperature.

Q,(k) = 0.008 + 0.0071E,[CO(k-1)] 600 < CO(k-1) < 1440
(3.16)

3.4 Complete Loop Model: Controller, Valve, Coil; Closed-Loop
Simulation

A discrete control equation was combined with Equations 3.10,
3.11 and 3.15 to obtain a computer generated simulation of the
entire closed-loop system. Figure 3.11 shows the entire loop in
block diagram form. The proportional-only control 1law which
resides in the digital computer, was chosen for its simplicity.
The proportional-only control law in the positional form was given
in Equation 3.6. While Equation 3.6 cannot be implemented exactly
because of computation time, it is very closely approximated with
a personal computer since the sampling interval was 5 s and the
time required for sampling data and computing the control equation
was less than 0.005 s. Proportional—-only control was performed on
the facility and data reccrded for proportional values of 100, 205,
and 410 cCo/°C. The tests lasted 32 min, 32 min, and 15 min
respectively, and contained step disturbances of airflow rate,
inlet air temperature, and inlet water temperature. The setpoint
for all tests was 50 °C (122 °F). The measured and predicted outlet
alr temperatures are shown in Figures 3.12 through 3.14. The
dynamics of the proportionally only closed-loop control were
predicted very well. These plots of actual and predicted outlet
air temperature reveal at least two significant details. First,
the response of the coil, valve, and E/P transducer were all

40

wds

‘do3s TeubTs TOIJUOD °SA B3I MOTF IOJIeM

(spuooseg) eun|

91 ct
1 | 1

0scl = 0D

% €9

"6°€ ®anbta

11

8L’

41

(1) ©

‘Toa3uoo dooT—-pPoOSOTO HuTtanp |Sjex MOTF I82eM peojorTpoad pue painsesy

pepipeld +
(seynuiy) st
St (o]}

peinsesyy ——

"

I
+H

i
+-HHHH
¥

900

€10

020

L2°0

14°2Y)

‘0T € ®@anbra

(8/1) mO

42

"TTOD Io3eM 304 POTTOIIu0d ATTe3THTP ©y3 Jo wexberp ¥0OTH "TI'E oanbrg

SHOA SHOA
Lt ——- ——
IUNIVHIJWIL ONY "3 OL DOTWNY
3 3
oe
1
s/B e} < ™
% > SHOA siiq ermmyog <
NOLLYNIBWOD 3ATVA HHIANOD DOTVNY H3ALNINOD
- oo - ——— e e} — g ——
oe M HIONASNVHL &/3 oL VLol vUia ds,
1 . 3 | 09
+ + + o
e M e
i 1 L
[

sedsuequnisig rewsexg

|
*0,/00 00T = d¥ {{TOD z93eM 30y POTTOIJU0D ATuo-Teuorizzodoad syjy zo uoTjleTNWUTS “ZI°'E oInbTg W
: X |

juodieg o--noeeeieens pejenwis

peinsespyy — —
(seynui) ewil,

o€ s2 0z Sl ot S 0
eLt : : . ! _

— e
peso|n HO uo 0s0]D eso]d
MD MIGLE MISE siedureqg siedurg

G0Z = dy /T1TO0O I93EM 30Y POITOIjU0D ATuo-yeuorixodoxd eyl FOo uorjzeTNWTIS

juodieg ...-------- POIEINWIS e

(seInuiw) euy.

0o = dsL ‘0 /0D
"€1°€ ®anbtg

painsesiy

(0] oc (0] 3 0]
(151 3 3]] ! 1 1 St
— -
77 A EORURURRURURRURPRRY | NUUUURURPRPRPA \ Y RSOSSN VUSRI NS NN S L os
e.l
. - (o]
m | —
IAWO
- -
el — — GS
obi 09
peso|D uedo HO uo uedo eso|p

45

‘Do 06 = dsi 10,/00
0Ty = dM ‘TTOD a®3em 30y poaTToIjuod ATuo-Teuorixzodoad aYyj Fo UOTIeTNWTIS °“pI g @anbrg

pejoipesd peinses
(senuy) ewiy
St ot S 0
pAAY | ! | i 1 1 1 1 | { 1 ! 1 | 0S
<A - 1S
92t < Y- 2s
221 — €S
0
A
621 — - bg
wl
. LSk -+ GG —~
h Lo)
el - —- 9%
Sel — IS
oet ~ 85
8EL - — 6§
ov1 09
uo
ued
5O IS L) o osoD

MISE) sledeg ssedwreq

predicted very well. This is true of not only closed-loop dynamic
response, but also the steady-state values. Secondly, the final
value of the process variable (T,,) is significantly different from
its setpoint, a result of proportional-only control. As the
proportional value is increased, the magnitude of this steady-state
offset decreases; however the system becomes less stable. This
presents a tradeoff in the tuning process. Tighter control is
obtained at the expense of stability. Furthermore, the nonlinear
system requires that tuning be performed at the point of highest
system gain (ratio of change in discharge air temperature to change
in control signal) to ensure stability over the complete range of
operating conditions, resulting in sluggish control for the

majority of the time. Thus, the motivation for developing a
nonlinear control law can obtain superior dynamic response without
sacrificing stability. This was done by first linearizing the

system about several operating points, observing simulated dynamic
response to a linear feedback control, and finally using those
results in developing a nonlinear control law.

47

4. A LINEARIZED SYSTEM

4.1 Linearization of the Coil Model

Although nearly all systems are in reality nonlinear, as are
heating coils, very often systems are analyzed 1linearly to
facilitate analysis and design. Once preliminary design and/or
analysis has been completed, the adequacy of the linearized model
must be evaluated.

The partial derivative of Equations 3.11 and 3.12, with
respect to the other variables, linearizes the model about an
equilibrium point, resulting in Equations 4.1 and 4.2.

Let 8X = X - X
X = Variable X at equilibrium point about which to
linearize
X = Variable X at arbitrary point

STWO(k) = FIISTWO (k-l) + G115Ta1 (k—'l) + GIZSTWJ. (k""l) + G138H.1a (k"l)
+ Gy, Om, (k-1) (4.1)

8T, (kt1l) = Fpy 08T, (k) + FpdT,o(k) + Gy 0T, (k) + G,0T,, (k)

+ Gpdm, (k) + Gpedm, (K) (4.2)
where

Fip = 8(T,(k+1)) /8 (T (k))

= 1 -2Am - 0.5[B + Cm, + Dm,]
Fio = 8(Ty(k+1))/0(T,(k))

= 0
Fpy = 8(T,(k+1))/8(Ty(k))

= 0.5(F + Gm, + Hm,]
Fpp = O(T,(k+1)) /8 (T (k))

= 1 - BEn,

48

Gy = O(Tu(k+1))/ (Tu(k))

= B + Cm, + Dm,
Giz = O(Tyo(k+l))/ (Ty(k))

= Am, - 0.5[B + Cm, + Dm,]
Gia = O0(T,(k+1))/ (m,(k))

= D[T, - 0.5[T, + T,ll
Gyg = O(T,o(k+1)) /8 (M, (k))

= A[T, - Tyl + ClTy - T,]
Gy = O(T,(ktl))/8(T, (k))

= Em, — F - Gm, - Hn,
Gy = O(Tuo(k+1))/8(T,(k))

= 0.5[F +Gm, +Hn,]
Gys = O(T,o(k+1))/d(m,(k))

= E([T, = T,) +H[0.5[T, + T,] — T.l
Gy = O(T,(K+1))/d(m,(k))

= G[0.5[Ty + Tyl — Tl

All variables are evaluated at the equilibrium point.

Assuming the external disturbances to be zero

(inlet air

temperature, inlet water temperature and airflow rate constant at
the equilibrium value), the dynamic response of the discharge air

temperature can be calculated as Equation 4.3. Using 2z

-l as the

one-step delay in the z domain, Equation 4.3 becomes the transfer

function of Equation 4.4.
0T, (k+1) = FpdT, (k) + [Gpy + GpsGyy]Om, (k+1)

+ GpsFyy 0T, (k)

S(Tao)/s(f;‘w) = FaGuy + Gylz - Fpy)

(z = Fj1)l [z - Fpl

49

(4.3)

(4.4)

4.2 Linearized Valve
Linearization of Equation 3.14 gives Equation 4.5.
8E, = [a, + 23,0 + 3a,C0% 18CO
= E,5CO (4.5)
Equation 3.15 yields Equation 4.6 and combining this with Equation

4.5 yields Equation 4.7

om, (k) = R,8E, (4.6)

dmw/8CO = RE, = K, (4.7)

4.3 Root Locus

The linearized coil transfer function (Equation 4.4) was
combined with the linearized valve transfer function to completely
describe the open loop transfer function. This linearized system
was next analyzed using the root locus. Since Equations 3.10 and
3.11 contain six variables, the four constant (at equilibrium)
inputs can be selected arbitrarily, and then the output variables
(T,, and T,,) solved for as in Equations 4.8 and 4.9.

T,, = [B + Cm, + Dm,][T,, - 0.5T,] + Am,T,,
A, + 0.5[B + Cri, + Dr,] (4.8)
T, = T, +[(F/Em,) + [Gm,/[Em]] ([T, + Tuw/2] - T,1]

+ (H/EJ[[Ty + T,)/2] = T, (4.9)

The equilibrium value for the external disturbance variables
(not controlled) were chosen as inlet air temperature of 30 °C (86
°F), inlet water temperature of 74 °C (165 °F), and airflow rate of
0.78 kg/s (1.72 lbm/s). The fourth input variable, controlled
water flow rate, was varied from 0.063 L/s to 0.32 L/s (1.0 gpm to
5.0 gpm). Equations 4.8 and 4.9 were then used to calculate the
corresponding equilibrium values of outlet water temperature and
outlet air temperature at each water flow rate. Next, the transfer
function parameters F,, Gy;, Gy, F,;, and F,, were computed for each
water flow rate. The coil-open loop transfer function was then
computed from Equation 4.4 for each water flow rate. Program
"FGFRR3.PAS" automated the procedure. Program descriptions are
included in Appendix A; source code is in Appendix B. Root locus
plots were then made for the five resulting transfer functions

50

using a constant valve gain of 0.000442 kg/s/8CO, and are shown in
Figures 4.1 through 4.5.

4.4 Design Criteria

As expected, the root locus revealed that as water flow rate
increases, the proportional gain allowable for stable operation
also increases. The desired result is a control law which varies
the proportional gain (K,) with water flow rate. One good design
for HVAC control might be a critically damped system, since the
primary objective is simply to get to a set point within a
reasonable time period without excessive control action. In terms
of root locus, this would be equivalent to the point at which the
roots break from the real axis. However, the relative positions of
the poles and zeros of the linearized model prevent this strategy
from being practical. As Figure 4.3 shows, at certain combinations
of the variables, two poles lie at the same position so that the
root locus breaks away from the real axis immediately.

Alternatively, a less stringent dynamic response
characteristic had to be chosen. The most common dynamic response
characteristics specified in a design are percent overshoot (%0S),
settling time, and rise time. For a second order system, these can
be expressed as simple algebraic expressions dependent upon roots
of the characteristic equation. Percent overshoot, for example,
can be expressed as a function of damping ratio.?

$0S = 100[1 - DR[0.06]] (4.10)
where

DR

Damping ratio

%$0S 100 [Max value - Final value]/

[Final value - Initial value]

In terms of the root locus, Equation 4.10 represents a logarithmic
spiral as outlined in Figures 4.1 through 4.5. With this choice,
instead of being concerned with eliminating small oscillations
entirely, which are acceptable, small overshoots are permitted and
the final value is reached more quickly. This corresponds to
finding the wvalue of K, which results in the root locations
intersecting the logarithmic spiral, marked in Figure 4.2 by two
squares.

*G.F. Franklin and J.D. Powell, Digital Control of Dynamic Systems (Addison-Wesley, 1980).

51

"S/T €90°0 IO 938X MOTF I93BM B STOPOW SATEA PUBR TTIOD POZTIBBUTIT JO SNOOT 3009 ‘T'p oInbrg

Z [eey

3 80 20 v'0 20 0] ¢0- ?v0- ©90- 80 -

- Q.Ol
= Q.O|
- N.Ol
- w.ol
- m.o-
— v.ol
j— m.ol
- N.ol
- F.o..

52

Z AreuiBew)

~ L0
- 20
~ €0
- ¥°0
—- S0
- 90
- L0
~ 80
- 60

BN

JOOUSIBAD %Se

*S/T 921°0 3O ©3eX MOTI I93EM JB STOPOW SATEBA PuR TTOD POZTIBBUTIT JO SNOOT JOOY

-~

Z reey

®

- JOOUSIOAD %G2

6'0-
8°0-
L0-
90-
S0-
v'0-
€0-
co-
+'o-

0
20
€0
v0
S0
90
FAY)
80
60

Z AreuiBew)

"Z°vy ®sanbra

53

"S/T 68T°0 3O 938X MOTJ I93EBM 3B STSPOW SATBA PUR [TOD POZTIBSUIT JO SNOOT 300d “€°p °oInbra

Z feey

Z AruBew)

T

JO0YSI8AQ %SG2

.w\.H 2SC°0 FO ©3ex MOTIF aA93eM JeB STOPOW OATRA PUR TTOD POZTIBDUTT JO sSNnOOT 300y

-~

Z [eed

©

N\

100USIOAD %SG2

6°0-
80-
L0-
90-
S°0-
b'0-
e0-
A
}'o-

(N0
c0
€0
v'0
S0
g0
L0
80
60

Z AreuBew

‘v y oanbra

55

*S/TT 9TE°0 JO 938X MOTF ID9JEM 3B STOPOW SATBA PUBR TTOD POZTIBOUIT FO SNOOT J00Y”

Zreey
¢ 8°0 90 v'0 c0 o c'0- v'0- 9'0-

80-

}O0YSIBAQ %52

6°0-
8°0-
L0
90-
S0-
v'0-
£0-
c0-
}'0-

1’0
20
€0

Z AreuBew;

ey sanbrg

56

5. PROPORTIONAL-ONLY NONLINEAR CONTROL

5.1 Nomenclature

The following nomenclature is used in the discussion of the
development and implementation of a nonlinear control law for the
hot water coil:

SPy = The value of the setpoint (T,,) at which steady
state is obtained before an experimental test or
simulation begins

oSpP = The amount by which T,, is increased or decreased
during an experimental test or simulation

Kpny = Proportional gain of a nonlinear control law

Ko = Proportional gain of a linear control law

error = T, — T,

5.2 Calculation of K, Vs. Water Flow Rate for 25 percent Overshoot

As mentioned in Chapter 4, percent overshoot (%0S) can be
calculated as a function of the closed-loop poles for a second
order system. Under certain conditions, %0S can be estimated for
higher-order systems via less simple alge»raic equations.?® For the
general case however, simulations can be more easily iterated for
the desired result. Two sets of programs, one of which used the
linearized coil model while the second used the nonlinear model,
were written to simulate the closed-loop step response of the coil
using proportional-~only control.

The first set of programs used the linearized coil transfer
function of Equation 4.4. A flow chart giving the sequence of
calculations and program flow is given in Appendix A as Figure A.1l.
First a compiled PASCAL program, "CLTF.EXE", computed the closed-
loop transfer function. Given the value of the three variables of
Table 5.1 along with the control variable, water flow rate,
Equations 4.8 and 4.9 were used to calculate the value of the two
remaining variables T, and T,,. Substitution of the results into
Equation 4.4 then gave the coil transfer function. "CLTF.EXE"
then calculated the closed-loop transfer function parameters for a
proportional-only controller, and saved it in a format readable by
the commercially available software package, Matlab. The Matlab
program "DSTEST.M" then computed the closed-loop step response to
a unit step input, automatically calculated %0S, and iterated the

’B.C. Kuo, Automatic Control Systems, 4th ed. (Prentice Hall, 1982).

57

Table 5.1

Four Steady-—-State Conditions Used for Calculation of
Nonlinear Control Law

Case T,y (oC) T, (°C) m, (kg/s)
Base 30 74 0.85
1 47 74 0.85
2 30 74 0.49
3 30 45 0.85

proportional gain until a %0S of 25 was found. Simulations were
run for water flow rates ranging from 0.03 L/s to 0.32 L/s (0.5 gpm
to 5.0 gpm) for four different cases, as listed in Table 5.1.

A second simulation program, "PSSPSELF.PAS", used the
nonlinear coil model and the proportional-only control law of
Equation 3.6. "PSSPSELF.PAS" performed setpoint disturbance
simulations (equivalent to a step input to the transfer function of
a linear system) to verify the results of the linear analysis.
Simulations for conditions identical to the transfer function
simulations performed using "DSTEST.M" were run, and the results
verified that the linearized coil model adequately describes the
behavior of the nonlinear coil for small setpoint disturbances, as
seen in Table 5.2. The discharge air temperature of one such
simulation calculated by "PSSPSELF.PAS", the base case at 0.063 L/s
(1.0 gpm), is shown in Figure 5.1. Here SP, = 38.73 °C (101.71
°F)and 8SP = 0.59 °C (1.06 °F). This small setpoint disturbance was
necessary to obtain nearly equal %0S for both an increase and a
decrease in setpoint. Table 5.2 lists the water flow rate, SPb,
and Kp resulting in a 25 %0S calculated by both "PSSPSELF.PAS" and
"DSTEST.M". Since the transfer function is by definition linear,
a step response has the same %0S for a step disturbance regardless
of its magnitude or sign. However, the nonlinear simulation
performed step setpoint upsets in both directions since %0S is
dependent upon both the sign and magnitude of the step input.
Because of this, an average is given for the %0S value calculated
by"PSSPSELF.PAS". SP, of Table 5.2 represents the setpoint required
for a proportional-only controller to achieve steady state .control
with the values of proportional gain and water flow rate listed in
the table. It is important to note here that a linearized gain of
0.000442 kg/s/8CO (calculated at 0.19 L/s [3 gpm], from Equation
4.5) was used for the valve in both simulation programs. Figure
5.2 shows the relation of the combined controller, transducer, and

58

Table 5.2

Proportional Gain for 25 %0S for the Base Case

Nonlinear Coil Linearized Coil

Q. SP, %$0S %0S
(L/s) co/°C) (°C) (avg) (Co/°C)
0.032 125 28.0 24.8 105 24.9
0.064 260 38.2 24.4 283 25.2
0.095 340 42.1 24.3 367 25.0
0.126 350 ;4.1 24.5 369 24.5
0.158 350 45.8 24.7 369 25.2
0.189 350 47.2 24.0 367 25.4
0.221 340 48.5 25.3 364 25.5
0.252 340 49.8 25.5 360 25.3
0.316 330 50.9 23.3 355 25.0

valve gain (KJK,) as a function of water flow rate for each case of
Table 5.1 which allows for a 25 percent overshoot. These curves,
obtained from the "DSTEST.M" simulation, represent the nonlinear
coil gain and water flow rate relationship from which a nonlinear
control law was developed. The shape of these curves was as
expected. As water flow rate decreases, the magnitude of its
effect on discharge air temperature increases. This can be plainly
seen by computing the steady-state gain of Equation 4.4, the
linearized coil transfer function according to the final value
theorem, assuming that for all poles of [1-z]P(z), the system lies
within the unit circle.

Gty = lim (z-1)_z P (z) (5.1)
z—1 (z-1)
where z/(z-1) = the unit step function
P(z) = the coil transfer function
Geotd = steady state gain of the coil
59

"S/7T €90°0 JO 93X MOTF I9JBM TRUTWOU ® 3JB JOOYSIDAO judoxad Gz
e Hurtonpoad Tepow TTOO IESUTTUOU Y3} Hursn sanjersdwsl ITe oHIeYOSIP pojeTRUTS "I1°G @anbtg

julodjeg oel

{seynuiL) stutf

8l ol vh 21 oL 8 9 b
o6 | ! | _ _ _
— oc
oL — e .
... ! — 8¢
8 3
—~ [3 —~,
I gor — Q
— 2
— b

60

61

‘3JooYysadA0 jJuedaad gz I0F 93X MOTF ao3eM ‘sa uteb TeuoTjxodoxd °g°'g =anbrg
i P £ h v 4 —1
A< RS \V4 =
€ ese)d 2 ese)d { ese) ese) eseg
(s/B>) MmN
S€°0 €0 1T) 20 Si°0 1’0 SO0 0
!] l] l] | 0
— 10
=3
— 20
Q{ h s 4 | —1 S—1. —
v v v VT
€0
b0
Rt " “ “
S0

g0

(OO/S/BX) AdH

The steady—-state coil gain was computed for the four cases of Table
5.1 and water flow rates from 0.0 L/s to 0.347 L/s (0.0 to 5.5
gpm) . The results, plotted in Figure 5.3, are consistent with
Figure 5.2. As water flow rate decreases, coil gain increases, and
the proportional gain produces 25 percent overshoot.

5.3 Proportional Gain as a Function of Water Flow Rate

The goal of this work was to obtain a control law such that
the controller would not have to be tuned at one particular
operating point, specifically at the least stable point, in order
to assure stability for the system’s entire range, and thus
sacrifice controller performance. That is the problem inherent in
a fixed, linear control strategy.

The curves of Figure 5.2 can be described by an equation
having the form:

KK, = a; (M,/Mp,,) " (5.2)
where

N,... = The maximum water flow rate

a, = Proportional constant C0/°C

b. = Dimensionless parameter
This form of curve fit was chosen because of its relatively simple
form and its ability to take the shape required to fit the data.
The water flow rate here is divided by the maximum possible
(corresponding to a fully open valve) so that the constant b, would
not be dependent upon the units used for water flow rate. The
curves of Figure 5.2 are very similar in their shape. In order to
use one of these relationships for a control law that provides for
25 percent overshoot or less for any of the four cases, the curve
corresponding to the lowest K, must be used. Therefore, the curve
of Figure 5,2 corresponding to the base case of Table 5.1 was fit
to the curve described by Equation 5.2. The predictions by Equation
5.3 were plotted in Figure 5.4 along with the values in Table 5.2.

KKy = 0.1901 (r, (k=1) /Mygoy) *-*7% (5.3)

62

"I°G ©Tqel JO SOSED INOF ©Y3l IOF 93ex MOTF I93em “sa ureb [Too s3e3s Apesls -g°G oanbrag

—— o —— v t%eeseesesessss

€ esen 2 esen L esen esed eseg

0
002

o

oob -3

g

O.

=

. [~ 009 %\
1 008

000°t

63

"3o0ysaeoAac Jusdrad Gz I0F 93BIX MOTF I93em °"sa aydy 9sed 9seq JO 3ITF °AIn) P g sxnbTy

s i
asel aseyg

(S/B>) MN
0 SE°0 €0 g0 20 S0 10 s0'0 0]
_ | _ | ! _ _

— S0°0

64

(OD/s/B) A

The relationship of Equation 5.3, was combined with the positional
form of proportional-only control (Equation 3.6) and a valve gain
of 0.000442 kg/s/C0O, to yield Equation 5.4.

Co(k) = al(rﬁw(k—l)/o.35])o1 [Tsp (k) - Too(k)] + bias (5.4)
where
mw = Water mass flow rate (kg/s)
bias = Control signal for zero error
a, = 430 Co/°C
b, = 0.3796

Since the performance analysis of a controller is always
somewhat qualitative by nature, it is natural to assess the
performance of a control law by comparing it to an already accepted
control law. Thus, the nonlinear proportional-only controller was
compared with a linear proportional-only controller.

For the hot water coil of this study, low water flow rates
correspond to the highest system gains, and are therefore the least
stable. A linear controller would therefore require tuning at an
operating point corresponding to the lowest water flow rate for
which the tuning technique does not satucate (completely close) the
valve. For the system considered here, a water flow rate of 0.032
L/s (0.5 gpm) is reasonable for this system. The curves of Figure
5.2, which assume a fixed valve gain of 0.000442 kg/s/d8CO, indicate
that for a 25 percent overshoot at an operating point corresponding
to the base case of Table 5.1 with a water mass flow rate of 0.3
kg/s (0.14 lbm/s), a K, value of 104 CO/°C would be required. A
fixed linear controller would have to be left at this value for all
operating conditions in order to assure stability. The relatively
small gain would result in a larger steady state offset and
sluggish response at operating points requiring higher water flow
rates. A nonlinear controller, developed from the relationship of
Figure 5.2, however, could vary the controller gain base upon the
control signal and valve characteristics to compensate for the
nonlinear coil.

Several simulations of closed-loop performance were conducted
for both a fixed linear controller and a nonlinear controller using
Equations 3.6 and 5.4. The simulation sets a base setpoint (SP,)
and waits 75 s for steady state. The setpoint is decreased by OSP
at 75 s, and at time 450 s, the setpoint returned to its original
value. Figure 5.5 1is a plot of the simulated discharge air
temperature for both a linear (K,, = 104 CO/°C) and a nonlinear
controller. The operating conditions for the test were those of

65

@S !TOox3UO0D ILDUTTUOU pue IBSUTT Hursn sanjexsdwsl xte 8H5IBYODSTP PO3RTNWTIS

(4)oer

o

06

o]}

oci

oet

*1°G ©TIgqe JO ©sSed v¥sSseq D § = dsQ D, GV =

"G°q @anbrg

b'S ‘b3 = judy 0 /0D b0l = |a)
julodieg [041U00 JBBUJJUON |05Ju00 Jesur)
(senuin) ew]
€L 2+ L oL 6 8 L 9 S t > 4 L 0
_ | | | | | | | i | | oe
- — S€
Il—
B} 3
- bu
— 05
] — g
09

66

the base case of Table 5.1, SP, = 45 °C (113 °F), 8SP = 5 °C (9 °F),
K, 104 CO/°C, and bias of 1207. This is not at all the desired
result The nonlinear control not only oscillates, but it also has
a larger offset. The problem lies in the feedback of the varying
proportional gain. When the setpoint was decreased to 40 °C (104
°F), this resulted in a steady state water flow rate of 0.05 L/s
(0.84 gpm) for the linear control. The water flow rate of the
nonlinear control however, oscillated between 0.0 L/s (0.0 gpm) and
0.17 L/s (2.7 gpm) as shown in Figure 5.6. When conditions change
such that the valve must be closed or nearly closed, K, approaches
zero, resulting in the control signal value approachlng the bias
value. Since the bias value was set corresponding to a water flow
rate in the middle of the flow range for zero error, the water flow
rate cycled between zero and this midrange value. Two possible
solutions to this were explored. One possible solution would be to
change the bias value. A second possibiiity would be to restrict
K, to a certain range. A third possibility would be to filter the
feedback variable that adjusts the proportional gain (water flow
rate). The first two possibilities were considered the only viable
alternatives since the third would involve adding additional
constants to be chosen.

Altering the bias value may work for specific operating
conditions, but is unlikely to work under varying conditions.
Setting the bias such that the valve closes at K, = 0 would provide
for a zero water flow rate when K, is zero, whlch is consistent
with the correlation of Equation 5.2. However, this is not
desirable. This would imply an infinite coil gain at zero water
flow, which is not the case as evidenced by Figure 5.2. Although
coil gain is certainly larger at lower water flow rates than at
higher water flow rates, it does not go to infinity. Figure 5.7
shows the effect of setting the bias to close the valve at zero
error. Here SP, = 45 °C (113 °F), O8SP = 5 °C (9 °F), bias = 1591,
and the conditions of the base case in Table 5.1 exist. Notice too
that this results in a final value below the setpoint. The
remaining simulations use a bias value of 1207.

Therefore, Equation 5.1 is not quite the right form. To fit
an equation of a more correct form, proportional gains for 25
percent overshoot of operating conditions with a water flow rate
below 0.032 L/s (0.5 gpm) would be required. This could be done
using simulations, but might prove to be difficult if it were
required for tuning an actual system. Additionally, this would
ultimately require that another controller constant be found, since
a curve fit to a more complicated form would involve additional
parameters. One alternative would be to assume K, constant for
water flow rates below some value. For the system used here, since
it was assumed that a linear controller would have to be tuned at
0.032 L/s 0.5 gpm, the curve fit of Figure 5.4 was assumed to be
flat below water flow rates of 0.032 L/s (0.5 gpm). Figure 5.8
shows the result of using the nonlinear control law of Equation 5.4
with an added condition that K, 2 105 CO/°C. Here SP, = 45 °C, &SP

67

"v°G uorjenby woxzy Tudy pue D /0D ¥OT = TAN YITM TOI3u0D
IeSUTTUOU PUB JBSUTT JO UOTIBTNUIS BY3 WOIF BUTIINSSI 93X MOTI I93eM '9-G oanbrg

Jeauluou Jeeul))

(senuiN) ewt).
02 Sl ot g)

o T B

_. — S0°0

S —
s — G1'0 z
m -
3 € m
3 — 20

b — — §&2°0

- €0
m —

68

LG °oanbra

*TI6GT = SeTq IDTTOIJUOD ‘T°G ©TqeL FO 9SeD 8seq DO § = dSQ ‘D, SV =
gqdsS {TOI3uod IEBSUTITUOU pue IeduTT Hursn sanjeasdwsd] ate abaeyosIp poajeTnuwrs
‘c'bg =1 =id
Jodes t's b3 = judy D,/02 S04 = {d)
{O}UCD JBSUIUON jonuos Jeeur
(senuI) ewutj
1> S A ! L Ot 6 8 L 9 S 14 € A b 0
| 1 ! | | 1 1] | !]] oe
06 —
— SE
001 —
—4 Okt — -
3 8
a o
02k —
— 0S
o€t — L gc
09

69

"1°G¢ 9Tqel JO ©sed ®seq D, § = dSQ ‘D, SP =
qds {TOIJUOd IBDBUTTUCU pue ILSUTT HuTsn axnjexadwel] xTe ©baeYOSTIP POjRTNMTIS g G @anbrg

0,/02 S0} = I
{o[quos Jeeur

..............

0,/00 S0} = ‘p'Gg'b3 = judy

uodieg
[04JU0D JBBUNUON
(seynuin) etui]
el ct i (0] 8 6 8 L =) S 1 4 € c 8 0
] I] l I] I l] |] l oe
06 — :
— Gt
00k — -
~ Obb — =
3 3
) o
oci
7 — 0S
oEh — ¢
09

70

= 5 ° (9 °F), and base conditions of Table 5.1 exist. The
nonlinear control decreased the steady state offset as compared to
the linear control, but a small oscillation persists for the
decrease in setpoint.

Since Equation 5.1 has two parameters, it allows a simple
manipulation of the parameters a, and b, to make the curve fit pass
through points on the low and high end. Changing the value of a,
shifts the entire curve up and down the y axis, and changing b,
alters the K, value at higher water flow rates. Since setpoint
decreases result in lower water flow rates, this means that a,
could be tuned for setpoint decreases. Conversely, b, could be
tuned for setpoint increases. The value of 104 CO/°C for K, at a
water flow rate of 0.03 L/s (0.5 gpm) was used to solve for a,; to
be 262 C0/°C, assuming b; to remain at 0.3796. This value for a,
successfully eliminated oscillation for this simulation as shown in
Figure 5.9, which is the same simulation as Figure 5.8 with the new
value of a,. Thus the nonlinear control law, with K, = 0.000442
kg/s/CO, was found to be:

K, = 262 (m,/n,q,,) °-37% (5.4)

Equation 5.4 was used in several simulations for the base case.
Small disturbances, 8SP = 5 °C (9 °F) were used because large
disturbances tended to completely open or close the valve,
regardless of the control law. Figure 5.10 shows a simulation
result for the base case with SP, 55 °C (131 °F) and 8SP of 5 °C (9
°F) . Again, the base conditions of Table 5.1 apply. This
controller does provide tighter control than possible with a fixed
controller. Although a fixed controller could be tuned with a
greater K;,, it would be unstable at lower water flow rates. For
instance, if a fixed controller were tuned to give the response of
the nonlinear controller in Figure 5.8, its response would be very
nearly the same as the nonlinear controllers near those operating
conditions. The 1linear controller response at a lower setpoint
however, corresponding to a lower flow rate, would be unstable as
evidenced by the simulation result shown in Figure 5.11.

5.4 Proportional Gain as a Function of Setpoint and Inlet Air
Temperature

Since the nonlinear control law of section 5.2 did not have a
greatly improved control, a second form of nonlinear control was
sought. One variable which affects the process variable and is
always known is the setpoint. This can be used in a feed-~forward
manner to compensate for setpoint disturbances. 1In many instances,
the inlet air temperature to a coil is also known. Most air
handlers in HVAC systems control the temperature supplied to a coil
by mixing outside intake and return air. If control of a heating
coil and this mixed air were performed by the same multi-loop

71

"0./00 0T = TAA ‘1°G ©Tqel JO ®sed ®seq D, § = dSQ D, GV =
qds :TOX3UOD IBIUTTUOU pue IeauTT Hursn axnjexsdwey aTe ©HIBYDSTP pojRTNWTS ‘6°GS 9anbrg

‘b3 = =
Juioches 3 = juchy D,/00 S0t = [d)
104}U09 JeauljuoN jo4Quo0 feeun
(senuIN) ewt
€ 2L L 01 6 8 Z 9 S 4 € 2 3 0
I | _ _ _ _ _ | | | _ oe
06 — :
— &€
00F —
= OkF — =
S | s 8
) — o
o2t —
— 0§
0E} — o
obt 09

72

TdM {1°G ®Tgel 3O ®sed °seq D, § = dsQ 0, §§ = q4as
"0T°G @anbrtg

*0./00 S0T
!{TOXIJUOD IBVSUTTUOU pue xedUTT Hursn axnjexsdweyz xte abaeyostp pPejeTnWIS

0_/0D SOk = |dy

‘b3x =
uocies 3 =
|OIIU0D JESUIUON jo4UOD resun
(seinuipy) el
13 8 ct b ot 6 8 L 9 S 4 1 c b 0
] |] |]] | | |] i | oE
06 —
— Gt
00L —
— O
g O -)
—~ - mq ——
3 O
0ct —
OBF — e
09

73

(4) oey

"D./00 6¥E = TdM !1°G O©Tqel 3O @sed ¥seq (D, 60T = dSQ ‘D, IL 'GE = qdS
/T0I3UO0D JIEBSBUTTUOU PUB JIeauTT Hursn axnjexadwey] aTe o206IeyOSTIP poeTNWIS

..............

‘»sb =
wiodies 0,/00 S0k 2 Ay ‘'S b3 D,/000LE = [d)
JOJJU0D JBBUIJUON jojuod reeur]
(seinuIN) ewn
] - O 1 T« 1 S 8 L 9 S 14 € 2 ' o
_ l _ _ _ _ _ | _ _ _ _

06 —
004 —
Okt —
ozt —
oeL — u

"IT°G °anbrtg

ot

14

0s

sS

09

°

() oey

74

controller, as in a direct digital control (DDC) panel, the
measured mixed air temperature could be used in this control law.

The difference between setpoint and inlet air temperature is
a strong indicator of the load required of the heating coil. The
form of Equation 5.1, with the difference of setpoint and inlet air
temperature as the independent variable makes sense as a control
law. As the setpoint approaches the inlet air temperature, the
water flow rate should also approach zero.

The design criteria, or the acceptable response, was chosen as
one which results in a slight decaying oscillation for both the
high and low system gain conditions. Two setpoints corresponding
to a nearly open and nearly closed valve for the base conditions of
Table 5.1 were chosen to develop a control law. Simulations were
run with the setpoint varying between these setpoints, using a
fixed linear controller with a bias of 1207, which corresponds to
a water flow rate at half of the full range, and K, iterated until
a slight oscillation of T,, was observed. An 1ncrease of setpoint
from 32 °C to 52 °C (90 °F to 126 °F) resulted in a slight
oscillation when a value of 690 CO/°C was used as shown in Figure
5.12. This value will hereafter be referred to as Kyu,. The
decrease in setpoint from 52 °C to 32 °C resulted in a sllght
oscillation when a value for K, of 310 CO/°C was used as shown in
Figure 5.13. This value will hereafter be referred to as K,.. The
values of T,,, T,, and K, were then used to fit Equation 5.5.

d
Ko = ¢ (Ts, — Tay) (5.5)
where
c, = 246
d = 0.3337
Figure 5.14 shows the resulting control gain. By fitting a

multiplicative curve through these two p01nts, superlor control by
a nonlinear controller using this as a gain equation is assured.
This is also very appealing for implementation concerns, as it
would simply require observing system response at two setpoints.

Figure 5.15 shows the results of a simulation using the
nonlinear control law of Equation 5.5 and the linear control law of
Equation 3.6 with K, = 690 CO/°C. The base conditions of Table 5.1
were used. The llnear controller matches the performance of the
nonlinear for the setpoint increase, but it is oscillatory at the
lower setpoint. The simulation was run again but this time with Ky
= 310 CO/°C and the resulting T,, plotted in Figure 5.16. The
linear controller nearly matches the nonlinear controller at the
lower setpoint in terms of both steady state error and dynamic
response, but it cannot provide the steady state accuracy of the

75

a nonlinear controller using this as a gain equation is assured.
This is also very appealing for implementation concerns, as it
would simply require observing system response at two setpoints.

Figure 5.15 shows the results of a simulation using the
nonlinear control law of Equation 5.5 and the linear control law of
Equation 3.6 with K, = 690 CO/°C. The base conditions of Table 5.1
were used. The linear controller matches the performance of the
nonlinear for the setpoint increase, but it is oscillatory at the
lower setpoint. The simulation was run again but this time with K
= 310 CO/°C and the resulting T, plotted in Figure 5.16. The
linear controller nearly matches the nonlinear controller at the
lower setpoint in terms of both steady state error and dynamic
response, but it cannot provide the steady state accuracy of the

76

o
.Oo\Ooomw"HQVmuH.meQmawOGmmommmﬂ.\UonOU.\OonEO.H.uuwmQ.p
jutodies e x03 Toxjuod xesurl bursn eanjezedwel aTe obreyosTP PejeTNWIS °ZI'g eanbrg

..............

jiocges oel

. (senuiwi) eun |

l I 1 l | |] oe

,
8 L 9 s b € 2 L 0 ,
|

06 — |

*0./00 OTE = TdN ‘g ©Tqel FO ®sed ®seq), g€ O3 O, 2§ wWoxF 3osdn

jurodiss ® I03 Toajuod IeaUuTT Hursn eanjeasdwony ITR 9bIXRUDSTP pejeTnWIS "€1°G oanbrg

...............

juodjeg oej

(seynuil) ewut]

ct HE

oc

...

00F —

oeL —

09

78

‘aanjexadwsy ITER JOTUT
snutw jurodi®@s pue sureb Teuorizxodoad oMl I0F 3ITF 2AIND SATIEDTTAIITON “¥I°G °2anbrg

79

|
g
(0 /0D) dy

(0,) re1-dsy
82 ve 02 9t 2t 8 14 0
] | | | 1 | l 1 | | | J { | 0
—~ 00}
~ 002
— 00€

*1°9 ©TqelL 3O ©sed ®seq D, 0Z = dSQ ‘D, 2 = 4qds
{T0I3UOD JIBDUTTUOU pue IedUTT Hursn axnjexsdws]y xte 96IeYOSTP POjIRTNWIS °"GI'G oanbrg

§'s b3 = juay 0 /00 069 = I

juloches |
joQuUoD Jesuluou j04uUOoD resu|
(seynui) ewuly
oe St 0] 8 S 0

"1'§ ®Iqel Jo ®sed eseq ‘D, 0Z = daSQ ‘D, ZE = 44S
{70I3U0D IEBSUITUOU pue IeJUTT bursn sanjesredwel xTe obieydsIp pejeTnUWIS °91°'§ °aInbra

............... SRR ——————————
Wiodies §'s ‘b3 = uay 0,/0001€ = [dx :
jONUOD JBBUIUON jo5juoo Jeeun
(senuil) ewj
o2 1% ot S 0

nonlinear controller at higher setpoints. The operating conditions
in between were also simulated and the nonlinear controller
performed well here also (Figures 5.17 and 5.18).

5.5 Implementation of the Setpoint-Dependent Proportional-Gain
Nonlinear Controller on the Test Facility

The simulations showed that the nonlinear controller can
outperform the linear controller only slightly. The simulations
however, did not take into account the effects of a nonlinear
valve. The nonlinear effects of the valve were expected to enhance
the performance advantage of a nonlinear control law.

Implementation of the nonlinear controller involves selecting
the constants for a system for which the gain characteristics are
not known. Thus, Equation 5.5 was tuned on the test facility as if
no knowledge of its dynamics were available. One very common
nmethod for tuning linear proportional controllers is a trial-and-
error approach very similar to those employed in determining the
constants of Equation 5.5 in the simulations. The general idea
then is to find an acceptable gain for two operating points and to
derive a nonlinear gain equation from those gains and some third
variable that changes and is always known (the setpoint).

The design criteria, or the acceptable response, was chosen to
be one that results in a slight decaying oscillation for both the
high and low system gain conditions. The first step for tuning the
control Equation 5.5 was to determine the maximum and minimum
possible values for the discharge air temperature. Figure 5.19
shows a step in CO from a fully closed to fully open valve. The
maximum obtainable temperature is 55 °C (131 °F) "and the minimum 32
°C (90 °F). Although the upper value seems quite reasonable, the
minimum value should theoretically be equal to the inlet air
temperature which was 26 °C. The reality is that the valve never
completely shuts off the flow unless the pump is turned off. The
next step was to conduct closed-loop step setpoint response tests.
Since the maximum and minimum values for T,, are 55 °C and 32 °C, a
guess that setpoints of 50 °C and 35 °C would nearly fully open and
close the valve were used in conducting tests. A test which did
not exercise the valve through its full range was conducted first
in order to obtain a first guess for Kphigh and kplow. (Figure 20)

The next test performed, whose discharge air temperature is
plotted in Figure 5.21, used SP, = 40 °C, 8SP = 10 °C, and K, = 600
C0/°C. Here continued oscillation provided the information that
Kpnign = 600 and K., < 600 CO/°C. Next, K, was decreased to 500 CO/°C
and the response of Figure 5.22 observed. This meant that Konigh S
500 CO/°C depending upon the allowable amount of oscillation.
Since the loop would likely require additional) fine tuning, this
was assumed to be the desired value for the time being. Figure
5.23 shows the observed result of decreasing K, to 350 CO/°C and

82

"1°9 ®IqelL JO ©sed ¥seq D, § = dSQ ‘D, 0§ = q4ds
{TOIJUOD IBBUTTUOU pue xedUTT Hursn sanjexsdwsl xte obxeyosTp pajeTnwWIS °L1°G 2INnBTI
' G = =|d
Juodies §'g b3 = udy 0./0D 04€ = [ciy
J0JJUOD JBBUIUON jouod Jeeur]
(seynuin) swil
144 ct bE 0] 3 6 8 L e} S 1 4 € 4 o)
] l | 1 | | |]] | | oc
06 -
— G€
00t —
— Ob
5 Oh
O
Hﬂ
02t —
oEt — o
09

83

*1°G 9TqelL JO osed ®seq D, § = dSQ ‘D, OV = qds
{T0I3UO0D IEBSUTTUOU PuUR JIBSBUTT pursn aanjexedwol xTe 8HIBVYDSTP pPLjeTnwrs gl Sanbri

E_o&mw Jeauyuou oe| Jeauy oel
(seinuiny) swit
0c Gl o} G 0 -
: _ _ _ o
m Ge
oy
y
3
E
Gk &
§
M\V.
oS
qq
09

T

84

00y ©3 00LT woxz dojs Teubts

ot 6 8

Tox13u0D ® 03 aanjexsadwol ITe

oe)l

(seynuiy) ewi

oHaeyosTp poansedw -EI°G oanbra

00} —

Okt —

0ct —

1011 ey

(1,) ey

(0,) oel

o€

21>

SS

09

85

"0o/00 00€ = TdA ‘D, ST = dSQ ‘D, SE = Qds
{A3TTTOBF 3593 UO TOIJUOD IBDUTT IOF danjexedwsl] xrte abIeyosIp paansesy -0Z°G oanbra

juiodies oe]

(seynun) swip
14 S > SR 8 L ot 6 8 L 9 S 14 € 4 I o)

I l | I | I]] [| | | | oc
06 —
SE
00t —
— OLE — -
3 3
a o
02+ —
oel — L ¢g
obt 09

86

*0./00 009 = TdM D, 0T = dSQ D, OV = 4ds

{X3TTTORY 393 UO TOIJUOD IBIUTT I0F danjexadwol] xrte obxeydsTp paInsesawy °“1Z°G¢ oxnbra

juloches oej

(sejnuiw) ewn|
9t Sk v+ €L 2 L OF 6 8 pA 9 S 14 € 4 3
|]]]] l | | | | l |]]]

oe

87

"2./00 00§ = Td¥ ‘D, OT = 4SQ 0, OV = 4ds
{K3TTTORY 393 UO TOIJUOD IRPUTIT I03F dxnjeaxsdwsy ate ©HaeydsTp pPaINSedH gz G 2@anbra

uodies oel
(sejnuiw) swun)
L ol 6 8 L 9 S 14 1> 4 i 0]
]] 1 |] 1 | {] { oc
06 —
— GE
00t —
- OLF — -
5 8
a)
o2t —
oet — o
ott 09

88

*0./00 0G6€ = TAX D, § = dSQ ‘D, S¥ = qds
{K3TTTO®RF 3§93 UO TOIJUOD JIedUTT I0F oanjeaddwsl] xte 9H6xeyOsTIP poansesy °“£Z°G oxnbra

juocheg oel

(seynunw) ewiny

Ll Ot 9]
06 —
SE
00k —
ob
- Ot -
S 3
a o
oct —
0et — S§
€oe}
09

89

observing the step response with SP, = 45 °C and 8SP = 5 °C. Thus,
Koow Was assumed to be 300 CO/°C.

Using the values obtained from the tuning tests (K, = 500
C0/°C, Kuow = 300 CO/°C, the control law of Equation 5.6 was
obtained by solving for a,; and b, using the value of T, (26 °C),
which was measured during the tests.

K, = 95.3[T, — T,]%%% co/°C (5.6)

The results of implementing Equation 5.6 in the positional control
law of Equation 3.6 is shown in Figure 5.24. Here, SP, = 35 °C (95
°F), O8SP = 5 °C (9 °F). The response is oscillatory at both high
and low setpoints, suggesting that the multiplicative constant,
95.3 is too high. For the inlet air temperature present during
this test, Equation 5.6 gave a gain of 530 CO/°C, higher than the
maximum found in the earlier tests. A value of 475 CO/°C was
assumed for K, and the control law of Equation 5.7 was calculated
assuming the power constant, 0.5208.

K, = B85[T,, — Tai}%%% (5.6)

The disturbance with SPb = 35 oC, 8SP = 15 oC was again performed
using Equation 5.6 An acceptable response was observed, so a
linear controller was used for the same test for comparison. A
proportional gain corresponding to a stable value at high setpoints
(low water flow rates) was used, Kpl = 310 CO/oC. The results
plotted in Figure 5.25 were very similar.

It is possible that this system simply does not have enough
nonlinearities to take advantage of the nonlinear control law.
Although it was shown that the coil studied had extremely nonlinear
steady state gain between 0.0 L/s and 0.06 L/s in which the full
flow rate is 0.34 L/s, beyond 0.06 L/s, the coil gain was linear.
Because of this, the nonlinear control law could only outperform
the linear control law if setpoints corresponding to this very
narrow range of operation were used. Setpoints corresponding to
that operating range physically made no sense. Because the
proportional-only controller always has an offset, the temperature
achieved, depending on the bias value used, is always either
greater than or less than the setpoint. The usual practice is to
pick the bias value such that when the error is zero, the bias
drives the actuator to provide a flow rate in the midrange of the
valve. 1In that case, for setpoints near that of the inlet air
temperature, the resulting discharge air temperature is greater
than the setpoint. The result is that, in order to achieve water
flow rates in the range that result in highly nonlinear coil gain,
setpoints below that of the inlet air temperature were required.
Figure 5.26 shows the resulting measured discharge air temperature

90

. "g°g uorjenby = Tudy ‘D, ST = d4SQ ‘D, SV = 4dS
{K3TTTORF 3S93 UO TOIJUOD IeIUTTUOU I03F ©axnjexadwel xte obieyosSTP pOINSeSsH °"¥Z°S oxnbta
wiocheg oel
(seynimu) eul|
14" r4Y o} 8 9 14 2 (0]
| 1 _ | _ ! oe
06 —
00} —
— ObL —
3
GO
o2k —
oclL — — SS
09

91

‘Gg°g uorjenbmy = Tudy D, §T = 4SQ ‘D, SE€ = qds
{K3TTTORI 3593 UO TOIJUOD IBSUTTUOU I0F oxnjeradws] XTe dbxeydSTIP paInsesy -Ggz°'g a2anbta

wiodjes oeL

(senunu) eut]
L 9 s ¥

vL €L 2L kb oL 6 8
R A N SN N TR RN SN NN DR N B o
06 —
00t —
4 OLh — 1
w 3
x ’
ozt —
0EL — B
038

92

*00/00 O0TE = TAX ‘D, § = dSQ D, GV = 4ds ‘A3TTTO®IY 3§93
U0 TOIJUOD IJIBSUTTUOU PUB IBBUTT I0F dxnjexsdwsdl ITE abxeyostTp poOINsSESsW °9Z°G aaxnbtg

o's ‘b3 D /00 0LE = 1A
juocies °
{0.[QUOD JeeN-UON joQuo) Jeeur
(senuiw) euuy
8 2 e S 14 € 2 ! 0
l 1 [] | 1 |
— 92
08 —
82
68 —f P
— 0¢
=~ -
8 06 — — <€ 3
3 o
— bE
S6 —
— 9¢
00t — — 8¢
ot

of two separate tests, the first of which used the linear control
law with Kpl = 310 CO/°C and the second, which used Equation 5.6.
Here the setpoint was decreased from 35 °C to 29 °C in both tests.
As the simulations predicted, the nonlinear controller provided
stable control while the linear controller oscillated. Although
this represents an artificially low setpoint, the same results
could be expected for other conditions with realistic setpoints
requiring low water flow rates such as lower airflow rates, higher
inlet water temperatures, and higher inlet air temperatures.

94

6. SUMMARY AND CONCLUSIONS

Much of the preliminary work performed for this study
concerned the data acquisition hardware and software.
Thermocouples for temperature measurement performed very well. Hot
wire anemometers for airflow rate measurement should be avoided if
possible. The software developed for data acquisition and analysis
would greatly simplify the task of any future work performed on the
test facility or on the models created.

The goals of this work were to develop an accurate dynamic
model for analysis of closed-loop control. A model was developed
to be accurate over a wide range of conditions, including a closed-
loop test with several simultaneously changing variables. The
major difference between this model and previous models is its
verified accuracy under closed-loop conditions. One reason for
this is a feed-forward term involving the inlet air temperature.

Two nonlinear proportional-only control laws were developed
and experimentally verified to work slightly better than a
proportional-only controller. The first nonlinear control law,
which used water flow rate to vary the proportional gain, was
unstable for many operating conditions. This was solved by
preventing the proportional gain from assuming values below that at
which a linear controller would have been tuned. The difference
between this resulting controller and the fixed linear controller
were still not impressive. Experimental validation of this
controller’s performance was not performed.

A second nonlinear controller was designed so that the
proportional gain was a function of the setpoint and inlet air
temperature. This controller was also better than the fixed linear
controller, but the difference was not impressive. This controller
was implemented on the test facility and compared to a fixed linear
proportional-only controller. The experimental results were found
to give very similar results to the simulations.

95

APPENDIX A. SOFTWARE DESCRIPTION

A.1 "PIDSIMM.PAS"

To automate the data acquisition, modeling, analysis, and
control of the hot-water-to—air heat exchanger, an integrated set
of programs were written using the TURBO PASCAL programming
language. The 4.0 version of TURBO PASCAL utilizes units, a
collection of compiled procedures and functions. One advantage of
units lies 1in the ability to compile, test, and debug them
separately from a main program. Once a unit is completely debugged
and compiled, it need never be recompiled. The main or calling
program has the name scheme of *.PAS while the compiled unit called
by the main program has the name scheme of *.TPU where the * can be
any eight or fewer combination of alphanumeric characters.

The main program for data acquisition, modeling, and
simulation is "PIDSIMM.PAS". PIDSIMM.PAS <calls on units
“FACILITY.TPU", "FROMFILE.TPU", "DRAW.TPU", and "MODELFIT.TPU" as
shown in the flow chart Figure A.1l.

A.2 "FACILITY.TPU" and "FROMFILE.TPU"

Data acquisition is accomplished by the "FACILITY.TPU" unit.
Packaged routines for accessing the analog-to—-digital and digital-
to—analog interfaces of the Metrabyte DAS-16 and EXP-16 boards were
used to acquire system data inlet and outlet air temperature, inlet
and outlet water temperature, airflow rate, and water flow rate.

As seen in the flowchart of psimm.drw, if data already
acquired is to be analyzed, the compiled unit "FROMFILE.TPU" is
run. First the user is asked the number of data points to be
taken, whether upsets are to be automatically initiated, and what
control algorithm to use. Choosing algorithm 0 results in an open-
loop test.

A.3 "FITMODEL.TPU"

Models were fit by "FITMODEL.TPU" using a batch form of
multiple regression least squares. This allowed a model to be fit
immediately after data acquisition. Once parameters were
calculated, they were saved on disk to the file Param.dat.

A.4 "DSTEST.M"

This is an M file, a set of Matlab commands executed
automatically in the Matlab environment. “DSTEST.M" first calls
compiled TURBO PASCAL program "F_GFRR3.EXE," which computes the
linearized closed-loop transfer function for proportional-only
control. Once the transfer function is computed, it is saved to a
disk file which is read by Matlab. Next the step response is

96

simulated and a %0S is computed. Depending on the value of %0S,
the proportional gain is increased or decreased until a %0S greater
than 24 and less than 25 is found, terminating the program. The
flow chart for "DSTEST.M" is shown in Figure A.1l.

A.5 "READMAT.PAS"

This is a TURBO PASCAL program to read a matrix saved in the
Matlab format and save it in ASCII format. This was used for re-
plotting the root loci plots.

A.6 "PSSPSELF.PAS"
This is a PASCAL program to simulate the response of the

nonlinear coil model to a setpoint step using both a linear and a
nonlinear control law.

User inputs:
Kp start
Kp increment

'

Old parameter file erasaed

t

New parameter file saved
F_GFRR3 calculates
closed loop TF and saves
to MATLAB format file

!

Read TF from file

!

Calculate step response

4

1

Calculate % overshoot

245 < %05 < 255

%08$ > 25
and increment > 0

yes

Increment MdotW

no

Yes

Increment= -Increment/2

0<8%08<5
and %0S < 20

yes

Increment = -2*increment

Figure Al.

98

Flow diagram of Matlab program DSTEST.M.

APPENDIX B: PROGRAM LISTINGS
"PIDSIMM.PAS"

{SR+) {Range checking off)

{$B+) {Boolean complete evaluation on}
{$S+) {Stack checking on})
{$1+) {I/0 checking on}

{$M 65500,16384,655360} {(Turbo 3 default stack and heap)
{ stack heapmin heapmax)}

program PIDSIMM(input,output):; {7~-19-89)

Uses Dos, Crt, Draw, Fitmodel, Facility, Fromfile, Pictures;

type Data_array = array([0..820,1..7] of real; {maximum
datapoints:

: Inlet air temperature

2: Outlet air temperature

Inlet water temperature

: Outlet water temperature

Water flow

Air flow

¢ Control signal)

type Parameters = record
date: string;
a: real; b: real; c:
f: real; g: real; h:
end;

{model parameters)

d: real; e: real;

j: real;

real;
real;

type Information = record {miscelaneous data)

Filename: string;

Datatype: integer; {0: facility, 1: from file}
Datapoints: integer; {number of datapoints)

Textfile: integer; (write to text file ? 0: no, 1: yes)

Transducer: integer; {0: venturi, 1: pitot tube, 2: hot wire
anemometer) .
PID: record (PID algorithm, Ki, Kp, Td)

alg:integer; Ki:
(PID alg O:

real; Kp: real; Td: real; end:;
open loop

1:
2:
3:

interacting rectangular
non-interacting velocity
constant

4: step

5: self tune)

Newparam: integer; {calculate new model parameters ? 0: no,

1: yes)

Setpoint: real;

Steadystate: integer; {(find steady state before beginning
test?

0: no, 1: yes)
Upsets: record

Run: integer; (run upsets ? 0: no, 1l: yes)
99

Double: integer; {adjust water flow after upset)
Damperon: integer; {close damper}

Damperoff: integer; {open damper)

Heaterson: integer; {turn 15kw heaters on)
Heatersoff: integer; {turn 15kw heaters off)
Coldwateron: integer; {add cold water to system)
Coldwateroff: integer; {turn cold water off)
Setpointon: integer; {raise sestpoint)
Setpointoff: integer; {lower setpoint)
Setpointsize: real; (size of setpoint error}
Wwtrflowhigh: integer; {(in PID alg 4, increase water

flow)

Wtrflowlow: integer; {in PID alg 4, decrease water

flow}

end;
Paramselect: integer; {parameter set used in test}
Error_model measured: real; {average error between measured
outlet air temperature and calculated outlet air temperature)
Error_setpoint_measured: real; {average error between
setpoint and maeasured outlet air temperature}
Error_setpoint_model: real, {average error between setpoint
and calculated outlet air temperature}
end;

Const max_buffer = 1000;

GPM_to_Kgps = 0.06296382; {conversion for water flow,
gallons per minute to kilograms per second)

FPM_to_kgps = 0.001221041; {conversion for air flow, feet
per second to kilograms per second}

var J, K, Code: integer;

X: char;
Year,Month,Day,Dayofweek: word;
Monthstr, Daystr: string;

P: Parameters;

I: Information;

Paramfile: file of Parameters;
Infofile: file of Information;
Filename: string;
Numberofrecords: integer;

stop: integer; {veriable returned from facility or fromfile
to stop program}
Paramselecttemp: integer;

function getvall(default: integer): integer:;
{read string from screen and convert it to 3K integer)
var Z: string;

Z_val, code: integer;

100

begin
readln(Z); if 2 <> '' then
begin
val(z,Z_val,code);
getvall := Z_val;
end
else
getvall := default;
end;

function getvalR(default: real): real;
{read string from screen and convert it to real}
var Y: string; ’
Y val: real;
code: integer;

begin
readln(Y); if Y <> '!' then
begin
val(Y,Y_val,code);
getvalR := Y val;
end
else
getvalR := default;
end;

procedure findfile(filename: string; var fileexists: integer);
{uses "findfirst" and "findnext to determine if file requested

exists)
var K ¢ integer;
fileinfo : searchrec;
lastfile : string;
begin
fileexists := 1;

findfirst ('\THESIS\DATA*.*',anyfile,fileinfo);
if fileinfo.name <> filename then begin
repeat
findnext (fileinfo);
if lastfile = fileinfo.name then
fileexists := 0;
lastfile := fileinfo.name;
until (fileinfo.name = filename) or (fileexists = 0);
end;
end;

procedure readinfo;
{determines which information file to use and reads it)
var datatypetemp: integer:
Fileexists: integer;
begin

101

datatypetemp := I.datatype:;
if I.datatype = 0 then
assign(Infofile, '\THESIS\DATA\INFO.DAT') {reserved information
file with standard data)
else begin
findfile(I.Filename+'.IN2',Fileexists);
if Fileexists = 1 then
assign(Infofile, '\THESIS\DATA\'+I.Filename+"'.IN2"')
else begin
findfile(I.Filename+'.IN1',Fileexists);
if Fileexists = 1 then
assign(Infofile, '\THESIS\DATA\'+I.Filename+'.IN1"')
else
assign(Infofile, '\THESIS\DATA\'+I.Filename+'.INF');
end;
end;
reset(Infofile); (open information file)
read(Infofile,I);

close(Infofile);
I.Datatype := datatypetemp:;
end;

procedure getupsets;
begin
window(1,1,80,25); clrscr;
writeln;
writeln('Select Upsets -');
drawbox(1,3,80,20); window(2,4,80,20);
write(!' Enter 1 for water flow step change(l) - '):
repeat
I.Upsets.double := getvalI(l),
until I.Upsets.double in [0..1],
if I.PID.alg > 0 then
begin
write(' The setpoint is (',I.Setpoint:2:0,') - ');
I.Setpoint := getvalR(I.Setpoint):;
end;
write(! Time to close damper(',I.Upsets.Damperon:4,') - !');
I.Upsets.Damperon := getvall(I.Upsets.damperon);
write(! Time to open damper(',I.Upsets.Damperoff:4,') - ');
I.Upsets.Damperoff := getvall(I.Upsets.damperoff):;
write(' Time to turn heaters on(',I.Upsets.Heaterson:4,') - ');
I.Upsets.Heaterson := getvalI(I. Upsets heaterson); if I. Datatype
= 0 then begin write(' Time to turn heaters
off(',I.Upsets.Heatersoff:4,') - ');
I.Upsets.Heatersoff := getvalI(I.Upsets.Heatersoff)
‘end
else
I.Upsets.Heatersoff := I.Upsets.Heaterson + 505; (if upsets are
added to data from file, the heaters must remain on for 505
seconds) write(! Time to turn cold water

102

on(',I.Upsets.Coldwateron:4,!') - ');
I.Upsets.Coldwateron := getvalI(I.Upsets.coldwateron):;
if I.Datatype = 0 then begin write(' Time to turn cold water
off(',I.Upsets.Coldwateroff:4,"') - ');
I.Upsets.coldwateroff := getvalI(I.Upsets.coldwateroff)
end
else
I.Upsets.Coldwateroff := I.Upsets.Coldwateron + 500; {if upsets
are added to data from file, coldwater must reamain on for at
least 500 seconds) if I.PID.alg > 0 then begin write(' Time to
increase setpoint(',I.Upsets.Setpointon:4,') - ');
I.Upsets.Setpointon := getvall(I.Upsets.setpointon);
write(' Time to decrease setpoint(',I.Upsets.Setpointoff:4,?')
- l);
I.Upsets.Setpointoff := getvalI(I.Upsets.setpointoff):
write(' Size of setpoint upset(',I.Upsets.Setpointsize:2:0,"')
- ');
I.Upsets.Setpointsize := getvalR(I.Upsets.setpointsize);
end
else
begin
I.Upsets.Setpointon := 0;
I.Upsets.Setpointoff := 0;
end;
end;

procedure correctinfo;
var Left, Top, Right, Bottom : integer;

fileinfo : searchrec;
Filename,Filename_ ¢ string;
Fileexists, Code ¢ integer;
begin
window(1,1,80,25);
writeln(' For Data from the facility enter 0,');
write (' for Data from a file enter the filename - !');
readln(I.Filename) ;
Filename_ := '';

for K := 1 to length(I.filename) do
Filename_ := Filename_ + upcase(I.Filename[K]);
I.Filename := Filename_;
if I.Filename = '0' then val(I.Filename,I.Datatype,code)
else begin
I.Datatype := 1;
findfile(I.Filename+'.DAT',fileexists);
if fileexists <> 1 then begin
textcolor (white+blink) ;
writeln; write(' File does not exist, press ctrl-break');
write(chr(7)):
X = readkey:;
end;
103

end;
drawbox(1,3,80,23);
Filename_ := I.Filename;
readinfo;
I.Filename := Filename_;
drawbox(1,3,80,5); window(2,4,80,5);
if I.Datatype = 0 then begin
write(" Number of datapoints - ');
readln(I.Datapoints);
for K := 32 to 60 do write(' '):
highvideo; write('Run time = ',I.Datapoints*5); lowvideo;
end
else begin
for K := 2 to 60 do write(' ');
highvideo; write('File: ',I.Filename); lowvideo;
end;
window(1,1,80,25); drawbox(1,5,80,9); window(2,6,80,9);
if I.Datatype = 0 then begin

writeln(! Enter 0 for air flow Data from Venturi,'):;
writeln(' enter 1 for air flow Data from Pitot tube,'):;
write(' enter 2 for air flow Data from Hot Wire Anemometer(0)
- l);

repeat

I.Transducer := getvalI(0):;
until I.Transducer in [0..2];
end
else begin
write(' Enter 1 to write to an ASCII file(0) - ');
repeat
I.Textfile := getvalI(0);
until I.Textfile in [0..1];
write(' Enter 1 to calculate new parameters(0) - ');
repeat
I.Newparam := getvalI(0);
until I.Newparam in [0..1];
end;
window(1,1,80,25); drawbox(1,9,80,20); window(2,10,80,20);
if (I.Newparam = 0) or (I.datatype = 0) then

begin
writeln;
writeln(' 0 = open loop!');
writeln(' 1 = interacting positoinal PID rectangular approx

integral!);

writeln(' 2 = non-interacting velocity PID');
writeln(! 3 = Constant');
writeln(' 4 = Step ');

gotoxy(1l,1); write(! Choose pid alg(',I.PID.alg,') = ');
repeat
I.PID.alg := getvalI(I.PID.alqg):;
until I.PID.alg in [0..4]:
if.I.PID.alg in [1..2,4] then begin
window(1,1,80,25); 104

drawbox (38,15,80,20) ;
window(39,16,80,20);
end;
case I.PID.alg of
1..2 : begin

write(! Ki(',I.PID.Ki:2:2,') - ');
I.PID.Ki := getvalR(I.PID.Ki);
write(' Kp(',I.PID.Kp:2:2,') - ');
I.PID.Kp := getvalR(I.PID.Kp):
write(' Td(',I.PID.Td:2:2,"') - '):

I.PID.Td := getvalR(I.PID.Td):
I.Upsets.wtrflowhigh := 0;
I.Upsets.wtrflowlow := 0;
end;
4 ¢ begin
write(' Time to set water flow hi('
,I.Upsets.wtrflowhigh,') - ');
I.Upsets.wtrflowhigh := getvalI(0):
write(!' Time to set water flow low('
I.Upsets.wtrflowlow,') - ');
I.Upsets.wtrflowlow := getvalI(0):
end;
end;
end;
window(1,1,80,25); drawbox(l,20,80,23); window(2,21,80,23);
if I.Datatype = 0 then begin
write(! Enter 1 to check for steady state(1l) - '):;
repeat
I.Steadystate := getvalI(l):;
until I.Steadystate in [9..1];
write('® Enter 1 to run upsets(l) - ');
repeat
I.Upsets.run := getvalI(l):;
until I.Upsets.run in [0..1];

end

else

if I.Newparam = 0 then begin
write(! Enter 1 to add upsets to file(0) - ');
repeat

I.Upsets.run := getvalI(0):
until I.Upsets.run in [0..1};
end;
if I.Upsets.run = 1 then getupsets;
end;

procedure readparameters;
var Left, Top, Right, Bottom: integer;
empty: char;
begin
window(1,1,80,25); clrscr;

drawbox(1,1,80,24); 105

assign(Paramfile, '\THESIS\DATA\PARAMF.DAT') ;
reset (Paramfile) ;
Numberofrecords := filesize(Paramfile);
t= 0; K = 0;
repeat
seek (Paramfile,J);
read (Paramfile,P);
gotoxy (2, (K*¥3)+2);
write(J:2,"! Parameters from: ',P.date);
gotoxy (2, (K*3)+3);

write(! a: ',P.a:2:6,"! b: ',P.b:2:6,

' c: ',P.c:2:6,! d: ',P.d:2:6):
gotoxy (2, (K*3)+4) ;
write(! e: ',P.e:2:6," f: ',P.f:2:6,

! : ',P.g:2:6,! h: ',P.h:2:6," j: ',P.j:2:6);
J :=J + 1y K:=XK + 1;

if K/7 = 1 then
begin
gotoxy(2,25); write('Press any key for more...!');
X := readkey:
clrscr;
drawbox(1,1,80,24);
K := 0;
end;
until EOF{Paramfile);
gotoxy(2,25);
if I.Datatype = 0 then
write('Select paramter set(',Numberofrecords - 1,') -
else
write('Select paramter set(',I.Paramselect,!) - ');
while keypressed do empty := readkey;
if I.Datatype = 0 then
I.Paramselect := getvalI(Numberofrecords - 1)
else
I.Paramselect := getvalI(I.Paramselect):;
seek (Paramfile,I.Paramselect);
read (Paramfile,P);
close(Paramfile);
Paramselecttemp := I.Paramselect;
end;

Begin
clrscr;
randomize;
textcolor(random(6) + 1);
getdate(Year,Month,Day, Dayofweek) ;
str (Month,Monthstr) ;
str(Day,Daystr) ;
I.Filename := Monthstr+'-'+Daystr;
correctinfo;

if (I.datatype = 1) and (I.Newparam = 0) then readparameters;

106

")

if I.Datatype = 0 then
begin
if I.PID.alg = 0 then I.Filename := Monthstr+'-'+Daystr+'OL!';
if I.PID.alg > 0 then I.Filename := Monthstr+'-'+Daystr+'CL';
end;
if I.datatype = 0 then begin
assign(Infofile, '\THESIS\DATA\INFO.DAT') ;
rewrite(Infofile):;
write(Infofile,I);
close(Infofile);
assign(Infofile, '\THESIS\DATA\'+I.Filename+'.IN1');
rewrite(Infofile);
write(Infofile,I);
close(Infofile);
Datafromfacility(I.Filename,stop);
end
else
begin
assign(Infofile, '\THESIS\DATA\'+I.Filename+'.IN2"');
rewrite(Infofile);
write(Infofile,I);
close(Infofile);
if I.Newparam = 1 then Findparameters(I.Filename)
else begin
Datafromfile(I.Filename,stop);
if stop <> 0 then plotdata(I.Paramselect,I.Filename);
end;
end;
End.

107

"FACILITY.TPU"

{SR+) {Range checking off}

{$B+) {Boolean complete evaluation on})
{$S+) {Stack checking on) o
{$I+) {I/0 checking on}

{$M 65500,16384,655360) {Turbo 3 default stack and heap)
{ stack heapmin heapmax }

UNIT Facility:;

Intexrface
Uses dos,crt,tp4dlé,tpdmisc,tpdteclin, stdhdr,sunstats,pictures;

procedure Datafromfacility(Filename: string; var Stop:integer);

type Data_array = array([0..820,1..7] of real; {maximum 800
datapoints:

Inlet air temperature

Outlet air temperature

Inlet water temperature

Outlet water temperature

Water flow

¢ Air flow

: Control signal)

NS WA

type Parameters = record {model parameters)
date: string;
a: real; b: real; c: real; d: real; e: real; f: real; g:
real; h: real;
end;

type Information = record (miscelaneous data)
Filename: string;
Datatype: integer; (0: facility, 1: from file)
Datapoints: integer; {numbe of datapoints)
Textfile: integer; (write to text file ? 0: no, 1: yes)
Transducer: integer; {0: venturi, 1: pitot tube, 2: hot wire
anemometer)
PID: record (PID algorithm, Ki, Kp, Td)
alg:integer; Ki: real; Kp: real; Td: real; end;
(PID alg 0: open loop
1: interacting rectangular
2: non-interacting velocity
3: constant
4: step
5: self tune)
Newparam: integer; (calculate new model parameters ? 0: no,
1: yes)
Setpoint: real;
Steadystate: integer; {find steady state before beginning

108

test? 0: no, 1l: yes})
Upsets: record
Run: integer; {(run upsets ? 0: no, 1l: yes)
Double: integer; {adjust water flow after upset)
Damperon: integer; {close damper})
Damperoff: integer; {open damper)}
Heaterson: integer; {turn 15kw heaters on}
Heatersoff: integer; (turn 15kw heaters off)}
Coldwateron: integer; {(add cold water to system}
Coldwateroff: integer; (turn cold water off}
Setpointon: integer; {(raise sestpoint)
Setpointoff: integer; {lower setpoint}
Setpointsize: real; {size of setpoint error}
Wtrflowhigh: integer; {in PID alg 4, increase water
flow)
Wtrflowlow: integer; {(in PID alg 4, decrease water
flow)}
end;
Paramselect: integer; {parameter set used in test)
Error_model_measured: real; {average error between measured
outlet air temperature and calculated outlet air temperature)
Error_setpoint_measured: real; {average error between
setpoint and measured outlet air temperature)
Error_setpoint_model: real; {average error between setpoint
and calculated outlet air temperature}
end;

{global declarations}

const max_buffer = 1000; {pascal requirement)
GPM_to_Kgps = 0.06296382; {conversion for water flow,
gallons per minute to kilograms per second}
FPM_to_kgps = 0.001221041; {conversion for air flow, feet
per second to kilograms per second}
Dubup = 1050; {size of change in control signal for
adjustment after upset)

var I: Information;
P: Parameters;
Infofile: file of Information;
K: integer;
Sum_error: real; {error between setpoint and outlet air
temperature, used in PID procedure}
aot_count_real, aot_count_real_old: real; {control signal in
bytes declared as real)
Filename: string:;
Ks,Kr,Kc:real; (PID values for PID alg 5}
pid5flag: integer; {boolean for using PID alg 5)

Implementation

procedure Init boards; {(initialize dashl6 and PIO12 boards)
109

var board_num, int_level,dma_level base_adr,
dig_cntrl_code,port_num,err code: integer;

begin
board_num := 0; int_level := 7; dma_level := 1; base_adr := 768;
d16_init(board_num,base_adr,int_level,dma_level,err_code) ;

board num := 1; int_level := 7; dma_level := 1; base_adr := 816;
dig_cntrl_code := 128;
piol2_init(board_num,base_adr,dig_cntrl_code,err_code);

end;

procedure piol2_(dot_out:integer); {signal to control upsets}
var board num,err_code,port_num: integer;

begin
board_num := 1; port_num := 0;
piol2_bous (board_num,port_num,dot_out,err_cocde);
if err_code <> 0 then
dl16_print_error(err_code)
end;

procedure dlé6ains_(chanlo: integer; var dataval_ains:integer);
var board num,err code: integer; {to read data)

begin
board_num := 0;
dl6_ains(board_num,chanlo,dataval_ains,err_code) ;
if err_code <> 0 then
d16_print_error (err_code)
end;

procedure dlébous_(var dataval_bous:integer);
var board_nunm,err_code: integer; (set explé channel to read)

begin
board_num := 0;
dl16_bous(board_num,dataval_bous,err_code) ;
if err_code <> 0 then
d16_print_error(err_code)
end;

(***)
procedure Datafromfacility;
var Data : Data_array;

CO: integer; {control signal in bytes)

New_error, O0ld_error, 0Old_old_error: real; {error between

110

setpoint and outlet air temperature, used in PID procedure)
EE T T e e e T T)

procedure upsets(Filename: string; var stop: integer; initialflag:
integer);

var Y: string;
Y _val, code, err_code: integer;
dot_out: byte; {output to control upsets, passed to PIO12_
procedure}
infofile: file of information;
Z: string;
Z_val: integer; {convert string to integer)
empty: char;
begin
if initialflag = 1 then begin {in first pass through program read
information file, and initialize
data)
assign(Infofile, '\thesis\data\'+Filename+'.inl');
reset (Infofile); {open information file)
read(Infofile,I);
close(Infofile);
{write all infromation to screen)}
clrscr;
drawbox(3,9,80,24);
gotoxy(5,10) ;
write('The upsets from the file \thesis\data\'+I.Filename+'.inf
are - ');
gotoxy(5,12); write('Setpoint is: ',I.Setpoint:2:0, '
degrees');
gotoxy(5,13); write('steady state: ');
if I.Steadystate = 1 then write('yes') else
write('no');
gotoxy(5,14); write('Filename: \thesis\data\',6I.Filename,'.*');
gotoxy(5,15); write('Datatype: !');
if I.Datatype = 1 then write('from file') else
write('from facility'):
write(' Datapoints: ',I.Datapoints,
' Time: ',I.datapoints*5,' Textfile: ');
if I.Textfile = 1 then write('yes') else
write('no');

gotoxy(5,16); write('PID alg: ');

case I.PID.alg of i
0: write('open loop');
1: write('interacting rectangular');
2: write('non-interacting velocity!');
3: write('constant');
4: write('step');
5: write('self tune');

end;

write(! Ki: ',I.PID.Ki:2:2,

111

]

' Kp: ',I.PID.Kp:2:2,' T4:
', I.PID.Td:2:2);

gotoxy(5,17); write('New parameters: '):;
if I.Newparam = 1 then write('yes') else
write('no');
gotoxy(5,18); write('Run upsets: ');
if I.Upsets.run = 1 then write('yes') else
write('no');
write(' Valve upset: ');
if I.Upsets.double = 1 then write('yes') else
write('no');
gotoxy(5,19); write('Damperon: ',I.Upsets.Damperon,
' Damperoff: ',I.Upsets.Damperoff):;
gotoxy(5,20); write('Heaters on: ',I.Upsets.Heaterson,
' Heaters off: ',I.Upsets.Heatersoff);
gotoxy(5,21); write('Cold wtr on: ',I.Upsets.Coldwateron,
' Cold wtr off: ',I.Upsets.Coldwateroff):
gotoxy(5,22); write('Setpoint up: ',I.Upsets.Setpointon,
* Setoint down: !',I.Upsets.Setpointoff,
' Size: ',I.Upsets.Setpointsize:2:2,'
degrees');)
gotoxy(5,23); write('Wtr flow high: ',I.Upsets.Wtrflowhigh,
' Wtr flow low: !',I.Upsets.Wtrflowlow):
gotoxy(5,25); write('Enter 0 if this is incorrect(l) - ');

while keypressed do empty := readkey; (empty keyboard buffer)
{1f any information is incorrect the user can start over)
readln(z); if 2 <> '' then
begin
val(z,Z_val,code): {convert string to integer)
stop := Z_val;
end
else stop := 1; (passed to PIDSIMM}
if stop = 0 then exit; {(do not run rest of unit)
if I.PID.alg = 0 then d16_aous(0,0,1050,err_code);
end; (initialization}
{run every pass}
if initialflag = 0 then begin
if K < 5 then dot_out := 0; piol2_(dot_out); {(turn all upsets
off)
if (K * 3 > I.Upsets.Damperon - 4) and
(K * 3 < I.Upsets.Damperon + 4) then begin {check time for
upset}
dot_out := dot_out or $08; piol2_(dot_out); (send signal for
upset to PI012_ procedure)
writeln('closing damper');
If I.Upsets.Double = 1 then begin ({adjust waterflow if asked
for)
aot_count_real := aot_count_real + Dubup;
CO := round(aot_count_real):;
dl6_aous(0,0,CO,err_code); (output to E/P)

112

end;
end;

if (K * 3 > I.Upsets.Damperoff - 4) and

(K * 3 < I.Upsets.Damperoff + 4) then begin

dot_out := dot_out .and $F7; piol2_(dot_out);
writeln('opening damper');

if I.Upsets.Double = 1 then begin
aot_count_real := aot_count_real - Dubup;
Co := round(aot count_ real).

dl6_aous(0,0,CO,err_code):;
end;

end;

if (K * 3 > I.Upsets.Heaterson - 4) and
(K * 3 < I.Upsets.Heaterson + 4) then begin

dot_out := dot_out or $06; piol2_(dot_out);
writeln('Turning Heaters On');

If I.Upsets.Double = 1 then begin
aot_count_real := aot_count_real + Dubup;
CO := round(aot_count_real);

d16_aous(0,0,C0,err_code); {output to E/P}
end;

end;

if (K * 3 > I.Upsets.Heatersoff - 4) and
(K * 3 < I.Upsets.Heatersoff + 4) then begin

dot_out := dot_out and $F9; piol2_(dot_out):
writeln('Turning Heaters Off');

If I.Upsets.Double = 1 then begin
aot_count_real := aot_count_real - Dubup;

CO := round(aot_count_real);
dl16_aous(0,0,CO,err_code); (output to E/P)
end;
end;

if (K * 3 > I.Upsets.Coldwateron - 4) and
(K * 3 < I.Upsets.Coldwateron + 4) then begin
dot_out := dot_out or $01; piol2_(dot_out);
writeln('Turning Cold Water On');
If I.Upsets.Double = 1 then

begin aot_count_real := aot_count_real - Dubup;
CO := round(aot_count_real):;

dl6_aous(0,0,CO,err_code):; {(output to E/P)
end;

end;

if (K * 3 > I.Upsets.Coldwateroff - 4) and
(K * 3 <1I

.Upsets.Coldwateroff + 4) then begin

113

dot_out := dot_out and $FE; piol2_(dot_out);
writeln('Turning Cold Water Off');
If I.Upsets.Double = 1 then begin
aot_count_real := aot_count_real + dubup:;
CO := round(aot_count_real);
dlé6_aous(0,0,CO,err_code); {output to E/P}
end;
end;
if (K * 3 > I.Upsets.Setpointon - 4) and
(K * 3 < I.Upsets.Setpointon + 4) then begin
I.Setpoint := I.Setpoint + I.Upsets.Setpointsize;
writeln('Setpoint increased by 5');
end;
if (K * 3 > I.Upsets.Setpointoff - 4) and
(K * 3 < I.Upsets.Setpointoff + 4) then begin
I.Setpoint := I.Setpoint - I.Upsets.Setpointsize;
writeln('Setpoint decrease by 5');
end;
end;
end;

procedure calc_pid; {of data_from_facility)
var
scan_min: real; (scans per minute)
PID calc: real; {solution to algorithm)}
aot_count: integer; {control signal in bytes)

begin
scan_min := 5/60;
old_old_error := old_error; {save setpoint - measured outlet
air temperature at time - 2}
old_error := new_error; {save setpoint - measured outlet air
temperature at time - 1)

If (CO < 1496) and (CO > 610) then {anti-windup)
sum_error := sum_error + old_error;

{anti-windup, actual range 1400 to 3400 for a 0-5V 12 bit

A/D)

new_error := -I.Setpoint + Data[K,2]; {reverse acting)

Case I.PID.alg of

1: begin
pid_calc := new_error * I,PID.Kp * (1 + I.PID.Td /
scan_min) -
(old_error * I.PID.Kp * I.PID.Td / scan_min) +
(sum_error * I.PID.Ki * I.PID.Kp * scan_min);
aot_count_real := 4095 * pid_calc/5; (control signal in

114

real)
end;
2: begin
pid_calc := I.PID.Kp*(new_error - old_error) +

I.PID.Ki*(5) * new_error +

(I.PID.TA/(5)) *

(new_error - 2*(old_error) + old_old_error);
aot_count_real:= 4095 * PID calc/5;
aot_count_real_old:=aot_count_real;

end;

3: aot_count_real := 1350.0;

4: begin
if (K * 3 > I.Upsets.Wtrflowhigh - 4) and
(K * 3 < I.Upsets.Wtrflowlow - 4) then aot_count_real :=
1600;
if (K * 3 > I.Upsets.Wtrflowlow - 4) then aot_count_real
t= 2007
end;

5: begin
pid_calc := Kc*new_error;
aot_count_real:= PID _calc;
if (aot count real > 610) and (aot_count_real < 1496) then
aot_count_real := aot_count_real_old + aot_count_real;
if pidsflag = 1 then
aot_count_real := 1150;
aot_count_real_old:=aot_count_real;
engd;

end; (Case}

Data[K,7] := aot_count_real; {0 - 100%)

if aot_count_real >= 1496 then aot_count_real := 1496
{valve never closes)
{min MdotwW ~ 1.3gpm)

else
if aot_count_real < 610 then aot_count_real := 610,
aot_count := round(aot_count_ real); (declared in this
procedure }
CO := aot_count; {CO declared globally) {0 ~
4095)
end;
procedure PID; {of data_from facility)
const max_buffer = 1000;
var last volts, volts: array[0..1l] of real;
lsv,hsv,1llim,hlim,up: real;
valout : integer:;
err_code,board_num,chanlo: integer:;

115

begin
if K >= 2 then

begin
New_error := -(I.Setpoint - Data[K,2]);
0l1d_error := -(I.Setpoint - Data(K-1,2]):
0ld_old_error := -(I.Setpoint - Data([K~2,2]);
lsv := 0; hsv := 5; 1lim := 0; hlim := 5;
board_num := 0; chanlo := 0;
up := 5;
calc_pid;

d16_aous (board_num,chanlo,CO,err_code); {output to E/P}
end
else
Data[K,7] := 0:
end; {(procedure PID}

procedure get_data; {of data_from_facility)
var Temp: array[0..3] of real; (temporary data storage
0: Inlet air temperature
1: Outlet air temperature
2: Inlet water temperature
3: Outlet water temperature}
J: integer; {counter)
GPMin, FPMin, FPMtemp, V: real; ({temporary data storage)
cjc_bin: integer; {dashlé requirments}
dataval_ains: integer;

begin
init_boards;
dléains_(7,dataval_ains); {get cold junction temperature)
cjc_bin := dataval_ains;
for K := 0 to I.Datapoints do begin
delay(3000) ;
if I.Upsets.Run = 1 then upsets(Filename,stop,0);
for J := 0 to 3 do begin {(get temperatures)
dlébous_(J); (set explé channel}
dl6ains_(0,dataval_ains); {read data)

Temp[J] := explé_tc_lin(dataval_ains,1000,cjc_bin,'T'):
{linearize thermocouple data)

end;

Temp[0)

¢:= Temp[O0] - 0.182;

Temp[2] := Temp[2] + 0.296; (correct for offsets)
{claculated from tests of 1/24/89}

dlébous_(4); {set expl6é channel to read water flow)

dléains_(0,dataval_ains);

if (dataval_ains * (50/2048)) > 48.22 then GPMin := 5.40

else if CO > 1496 then GPMin := 0.00

116

else GPMin := 0.01267 + (0.11173 * (dataval_ains * (50/2048)));
FPMtemp := 0;
for J:= 1 to 4 do begin {average air flow to reduce noise)

if I.transducer = 1 then dl6ains_(3,dataval_ains)

else dléains_(5,dataval_ains):

V := dataval_ains * 5 / 2048;

if I.Transducer = 2 then { Hot Wire Anemometer)}

FPMin := -16.9066 + 259.0772 * V - 167.9884 *V*V + 250.9507
*VkV*V;

if I.Transducer = 1 then { Pitot-Tube }
FPMin := 15.746%*sqrt(((Temp[1]*9/5)+492) *abs(V));

if I.Transducer = 0 then { Venturi

FPMin := 14.262%sqrt(((Temp[1]*9/5)+492)*abs(V));
FPMtemp := FPMtemp + FPMin:;
end;
FPMin := FPMtemp/4;
Data[K,1] := Temp[O
Data([K,2] := Temp(1l

d iaeed Comed

. 14
Data(K,3] := Temp[2]:
Data[K,4] := Temp(3];
bata[K,5] := GPMin; if Data[K,5) < 0 then Data(K,5] := 0;
Data(K,6] := FPMin; if Data[K,6] < O then Data([K,6] := 0;°
PID;
writeln((K*5):2,' !',Data[K,1]}:2:2,' !',Data[k,2]:2:2,
' ',DatafK,3]:2:2,' !',Data([K,4]}:2:2,'
',Data{K,5]:2:2,
' ',DatafK,6]:2:2,' ',Data(K,7]:2:3¢(,'
',Data(K,8]:2:2,
' ',Data[K,9]:2:2}):
end;
end; {procedure get_data)

procedure writedata;
var Writefile: file of real;
begin
write('Writing to '+Filename);
assign(writefile,Filename);
rewrite (writefile);
for K := 0 to I.Datapoints do begin
write(writefile,Data[K,1],Data[K,2],Data(K,3],Data(K, 4],

Data[K,5],Data(K,6],Data(K,7](,Data(K,8],Data(K,9]}):
if (K/40 - INT(X/40) < 0.10) and (K/40 - INT(K/40) > -0.10)
then write('.');
end;
close(writefile);
writeln;
end; (procedure write file)

procedure Steady_state(condition : integer):
117

var Datapoints_stored: integer; {temperary storage}
Runupsets_stored: integer; (temporary storage}
Min air temp, Max_air_temp: real;

begin
Datapoints_stored := I.Datapoints;
Runupsets_stored := I.Upsets.Run;
I.Upsets.Run := 0; {do not run any upsets)
I.Datapoints := 24; {steady state for 24 counts}
repeat
get_data;
Min_air_temp := Data[0,2]; {(initialize}
Max_air_temp := Data(0,2]:
for K := 1 to I.Datapoints do begin

if Data[K,2] > Max_air_temp then Max_air_ temp := Data([K,2];
if Data[K,2] < Min_air_ temp then Min_air temp := Data(K,2];
end;
writeln('Temp difference = ',ABS(Min_air_ temp_

Max_air_temp):2:2);
until ABS(Min_air temp - Max_air_temp) < condition;

Filename := '\thesis\data\'+I.Filename+'.ss';
writedata(0);
I.Datapoints := Datapoints_stored;
I.Upsets.Run := Runupsets_stored;

end;

procedure Integral_Only Tuning(var Ks,Kr,Kc:real):;

(PID alg 5)
const numobs = 50;
numcol = 1;
Var
dataset ¢ recmat;
dataset2 : array[0..500] of real;
Noise_Tao : real;
err code : integer;
Nloop,Td ¢ integer;

minima,maxima,range,sumxx,mean,varience,stddev,semean,mode:
ShortVector;

cjc_bin: integer;
dataval_ains,dataval_bous: integer;
Counter : integer;

Min_air_ temp,Max_air_ temp: real;
Tao_fs,Tao_ss: real;
Tc,Tc_calc,Tc_low,Tc_high: real;

S: real;

X :char;

steadystatepass: integer;

statfile: text;

procedure Small data(writetofile : integer);
begin 118

init_boards;
dl6ains_(7,dataval_ains);
cjc_bin := dataval_ains;
For K := 0 to (Numobs-1) do begin
delay(500);
dlebous_(1):
dl6éains_(0,dataval_ains);
d a t a s e t [K , 0]
expl6_tc_lin(dataval_ains,tc_bin_in,1000,cjc_bin,'T');
dataset2[steadystatepass * 50 + K] := dataset(K,0];
writeln('(',K:2,') ',dataset[K,0]:5:2);
if writetofile = 1 then
writeln(statfile,'(',K:3,') ',dataset(K,0]:5:2);

end;
end; {procedure Small_Data}

Begin
assign(statfile, '\thesis\data\sumstat.dat');
d16_aous(0,0,1150,err_code);
pidsflag := 1;
steady_state(1);
pidsflag := 0;
steadystatepass := 0;
rewrite(statfile);
repeat
small_data(l):
Min_air_temp := Dataset[0,0];
Max_air_temp := Dataset[0,0];
for K := 0 to (numobs-1) do begin
if Dataset[K,0] > Max_air_temp then Max_air_temp :=
Dataset[K,0];
if Dataset[K,0] < Min_air_temp then Min_air_temp :=
Dataset(K,0];
engd;
writeln('Pass ',steadystatepass:2,
! Temp difference = ' ,ABS(Min_air_temp -
Max_air_ temp):2:2);
steadystatepass := steadystatepass + 1;
until ABS(Min air_temp - Max_air_temp) < 0.5;

Tao_ss := (Min_air_temp + max_air_temp)/2;

SummaryStats (dataset, numobs, numcol,minima,maxima, range, sumxx,mean
,varience,
stddev, semean,mode) ;
Noise_Tao := 3.0*stddev{[0]:;
dl6_aous(0,0,C0-200,err_code); (Step output to E/P)
steadystatepass := 0;
repeat
small_data(l);
Min_air temp := Dataset{0,0];

119

Max_air_temp := Dataset([0,0];
for counter := 1 to (numobs-1) do
begin
if Dataset[counter 0] > Max_air_ temp then Max_air temp :=
Dataset[counter, 0]
if Dataset[counter,0] < Min_air temp then Min air_temp :=
Dataset[counter,0];
end;
writeln('Pass ',steadystatepass:2,
' Temp difference = ',ABS(Min_air temp -
Max_air_temp):2:2);
steadystatepass := steadystatepass + 1;
until ABS(Min_air temp - Max_air_temp) < 0.5;
Td := 0;
Repeat
T™d :=Td + 1;
Until (dataset2[Td] - mean{0] > Noise Tao*1.25)
or (Td > steadystatepass * 50),
Tao_fs := (Min_air_temp + max_air_temp)/2;

Ks := (Tao_fs - Tao_ss)/200;

Tc_calc := Tao_ss + (Tao_fs -~ Tao_ss) * 0.63;
K := 0;
repeat
if (K > 0) and (K < steadystatepass * 50) then begin
Tc_low := Dataset2[K-1];
Tc_high := Dataset2[K];
end;
K =K+ 1;
until (Tc_calc > Tc_low) and (Tc_calc < Tc_high);
writeln;
Tc := K - 1.5;

S := ((Td/Tc)*(Td/Tc) + 4 -(Td/Tc + 2))/(2*Td);
Kr := EXP(Td*S) * ((1/Tc) + S) * S;
Kc := Kr * (Tc/Ks);

writeln(minima[0]):2:2,' ',maxima[0]:2:2,' ', range[0}:2:2,' !,
sunxx[0]:2:2,' ',mean{0]:2:2,' !',varience[0]:2:2,' !,
stddev{0]:2:2, ' semean[O] 2:2);
writeln(Tao_fs:2:2,' ! Tao ss:2:2,' ‘',rd:2,' ',Tc:2:2,' !,
noise_tao:2:5," v,8:2:2, ', Ks:2:5," ', Kr:2:5,"
', Kc:2:5);
writeln(statfile,minima[0]:2:2," ', maxima{0]:2:2,
', range[0]):2:2,' ',
sumxx[0]:2:2,' ',mean(0]:2:2,' !',varience(0]:2:2,' °?,
stddev([0]:2:2,' !',semean{0]:2:2);
writeln(statfile,Tao_fs:2:2," ', Tao_ss:2:2,! ', Td:2,!

' Tc:2:2,' !, 120

noise_tao:2:5,! ',8:2:2,"! ',Ks:2:5,! ', Kr:2:5,!
',Kc:2:5);

close(statfile);
dl6_aous(0,0,1150,err_code);
end; (procedure Integral_Only Tuning}

begin {procedure data_from_facility)
window(1,1,80,25);
aot_count_real := 1050;
aot_count_real_old := aot_count_real;

K := 0;
Init_boards;
sum_error := 0;

upsets(Filename,stop,1):
if stop <> 0 then
begin
clrscr;
{I.PID.Kp := I.PID.Kp*5/I.Setpoint;)
writeln;
if I.PID.alg = 5 then begin
writeln('Calculating PID values');
integral_only tuning(Ks,Kr,Kc);
end;
if I.Steadystate = 1 then
begin
writeln('Waiting for steady state!');
steady_state(1l):
end;
writeln;
writeln('Data from facility!'):
get_data;
Filename := '\thesis\data\'+I.Filename+'.dat!';
writedata(0):;
end;
end; {procedure data_from_facility)

End.

121

{SR+) {Range checking off)

{$B+) {Boolean complete evaluation on}

{$S+) {Stack checking on)

{$I+) {I/0 checking on)

{$M 65500,16384,655360) {Turbo 3 default stack and heap)

UNIT Fitmodel;

Interface
Uses Dos, Crt, StdHdr, MatMath;
procedure Findparameters(Filename: string);

type Parameters = record
date: string;
a: real; b: real; c: real; d: real;
e: real; f: real; g: real; h: real; j: real;
end;

type Information = record

Filename: string;

Datatype: integer;

Datapoints: integer;

Textfile: integer;

Transducer: integer;

PID: record
alg:integer; Ki: real; Kp: real; Td: real; end;

Newparam: integer;

Setpoint: real:;

Steadystate: integer;

Upsets: record
Run: integer;
Double: integer;
Damperon: integer;
Damperoff: integer;
Heaterson: integer;
Heatersoff: integer;
Coldwateron: integer;
Coldwateroff: integer;
Setpointon: integer;
Setpointoff: integer;
Setpointsize: real;
Wtrflowhigh: integer;
Wtrflowlow: integer;

end;
Paramselect: integer;
end;

var I: information;
P: Parameters:;
Infofile: file of Information;

Paramfile: file of Parameters;
Numberofrecords: integer;

Implementation

procedure findfile(filename: string; var fileexists: integer);

var X : integer;
fileinfo : searchrec;
lastfile : string;
begin

fileexists := 1;
findfirst ('\THESIS\DATA*.*', anyfile,fileinfo);
if fileinfo.name <> filename then begin
repeat
findnext(fileinfo) ;
if lastfile = fileinfo.name then
fileexists := 0;
lastfile := fileinfo.name;
until (fileinfo.name = filename) or (fileexists = 0);
end;
end;

Procedure Param;

var
readfile, write_file: file of real;
Air_temp_in,Air_ temp_out,Water -temp_in,Water_temp out,
Water_flow,Air_flow,Control_signal, WaterSS, AirsSs,
Air_temp_in_1,Air_ temp_out_1,Water_temp_in_1,Water_temp_out_1,
Water_flow_1,Air_flow_1: real;
K: integer;
Twbar, DTA, Dtw, A, B, C, D, E, F, G, H, J: real;
Filename: string;

Begin
Filename := '\thesis\data\'+I.Filename+'.dat';
Writeln('Reading from '+I.Filename+' &');
assign(readfile,Filename) ;
Filename := '\thesis\data\'+I.Filename+!'.par';
Writeln('Writing to '+Filename);
assign(write_file,Filename);
reset (readfile);
rewrite(write_file);
K := 0;
repeat
read{readfile,Air temp_in,Air_temp_out,Water_temp_in,
Water_temp_out,
Water_flow,Air flow,Control_signal(,WaterSS,Airss}):
K:=K+ 1;
if X > 1 then
123

begin
Twbar := (Water_temp_in_1 + Water_temp_out_1)/2;
DTw := (Water_temp_out - Water_temp_out_1);
= Water_flow_1 * 0.06296382 * (Water_temp_in 1 -

Water_temp_out_l);
B := Air temp_in_1 - Twbar;
C := Water_flow_1 * 0.06296382 * (Air temp_in 1 - Twbar):
D := Air_ flow 1 * 0.001221041 * (Air _temp_in_ 1 - Twbar):
Twbar := (Water temp_in_1 + Water_temp_out 1)/2,

DTA := —-(Air_temp_out_ 1 - Air_temp_out);

E := Air_flow_1 #* 0. 001221041 * (Air_temp_in 1 -
Air_temp out_1);
:= Twbar - Air_temp_in_1;
= Water_flow_1 * O. 06296382 * (Twbar - Air temp_in 1)
:= Air flow 1 * 0.001221041 * (Twbar - Air_temp_in_1);
t= Air temp_in - Air_temp_in_1;

o™

if (K/40 - INT(K/40) > -0.10) and (K/40 - INT(K/40) < 0.10)
then
write('.'):

write(write_file,Dtw,A,B,C,D,DTA,E,F,G,H,J);

end;

Air_temp_in_1 := Air_temp_in;
Air_temp out_1 := Air_temp_out;
Water_temp_in_1 := Water_temp_in;

Water_temp_ out 1 := Water_temp_out;
Water_flow_1 := Water_flow;
Air_ flow 1 := Air_flow;

until EOF (readfile);

I.Datapoints := K;

close(readfile) ;

close(write_file);

writeln;

end;

procedure Findparameters;

type
square4x4 = Array(0..3,0..3] of real;
Vector = Array[0..4] of real;
var
A, Ainv, AA, AAinv, B, BB, C, CC ¢ recmat;
X, XX ¢ Vector;
Count, M ¢ integer;
shit,Y,YY,Det,RSSW,RSSA ¢ Real;
K, N, H Integer;

file of real;
string[10];
string;
string[50]:

124

DataFile, DataOutFile
Inlable, Outlable
Fileanal

FirstLine

readfile : text;

Infofilename : string;
yA ¢ char;
fileexists : integer;
Begin

window(1,1,80,25);
gotoxy(1,24);
findfile(filename+'.IN2',fileexists);
if fileexists = 1 then begin
assign(Infofile,'\thesis\data\'+Fi1ename+'.in2'):
end
else begin
findfile(filename+'.IN1', fileexists);
if fileexists = 1 then begin
assign(infofile,'\thesis\data\'+filename+'.inl');
end
else begin
assign(infofile,'\thesis\data\'+filename+'.inf');
end;
end;
reset (Infofile);
read(Infofile,I);
close(Infofile);
Param;
FillcChar(A,Sizeof(A),0):
FillChar (AA,Sizeof(AA),0);
Fillchar(B,Sizeof(B),0):;
FillChar(BB,Sizeof(BB),0);
FillcChar(c,Sizeof(C),0):
Fillchar(cc,sizeof(CC),0);
FillChar(X,Sizeof(X),0):
FillChar(XX,Sizeof (XX),0);
FillChar(Ainv,Sizeof(Ainv),0);
FillChar(AAinv,Sizeof (AAinv),0);
Count := 0;
Fileanal := '\thesis\data\'+I.Filename+'.par’;
writeln('Reading from '+Fileanal);
Assign(DataFile,Fileanal);
Reset (DataFile) ;

Read (Datafile,¥,X[0],X[1],X[2],X[3],YY,XX[0],XX[1],XX[2],XX[3],XX

(41):
{dont use first data points, sometime get bad readings)
N := I.Datapoints - 1;
For M := 2 to N Do
begin

Rea?(DataFile,Y,X[O],X[l],X[2],X[3],YY,XX[O],XX[l],XX[2],XX[3],XX
(4]):
if (M/40 - INT(M/40) > -0.10) and (M/40 - INT (M/40) < 0.10)
then write('.'); 125

For K := 0 to 3 do begin { Column)
For H := 0 to 3 do begin { Row }
A[K,H] := A[K,H] + (X[K]*X{H]):
end; { [X'X])
C[K,0] := C[K,0] +(X[K]*Y);
end; {X'Y)

for K := 0 to 4 do begin
for H := 0 to 4 do begin

AA[K,H] := AA[K,H] + (XX[K]*XX[H]):;
end;
CC[K,0] := CC[K,0] + (XX[K]*YY):
end;

end; {for 1 to N}
Close(DataFile);

writeln;
MatInvert (A, 4,det,Ainv);
MatInvert (AA,5,det,AAinv);
MatProd(Ainv,C,4,4,4,B);
MatProd(AAinv,cc,5,5,5,BB);

Writeln('A B c D');
Writeln(B{0,0]:2:6,' ',6B[1,0]:2:6,' ',B[2,0}:2:6,"'
',B[3,0]:2:6);
writeln;
writeln('E F G H J'):
Writeln(BB[0,0]:2:6,' ',6BB[1,0]:2:6,' ',BB[2,0]:2:6,' !
,BB[3,0]:2:6,' ',BB[4,0]:2:6);

assign(Paramfile, '\thesis\data\Paramf.dat');
reset (Paramfile) ;
Numberofrecords := filesize(Paramfile);
for K := 0 to Numberofrecords - 1 do
begin

read (Paramfile,P) ;

if P.date = I.Filename then

begin

writeln('Parameter set named ',I.Filename,' already exists');

writeln(' choose a different name, ')
writeln(' or enter 0 to ingnore - !
readln(I.Filename) ;
end;

end;

P.Date := I.Filename;

P.a := B[0,0]; P.b := B{1,0]; P.c := B[2,0]; P.d := B[3,0]:

P.e := BB[0,0]; P.f := BB[1,0];

P.g := BB[2,0]; P.h := BB[3,0]; P.j := BB[4,0);

seek (Paramfile,Numberofrecords) ;

if I.Filename <> '0' then write(Paramfile,P);

close (Paramfile) ;

end; 126

)i

End.

127

"FROMFILE.TPU"

{$R+} {Range checking off}

{$B+) {Boolean complete evaluation on}
{$S5+) {Stack checking on}
{$I+) {I/0 checking on}

{$M 65500,16384,655360} {Turbo 3 default stack and heap)
{ stack heapmin heapmax }

UNIT Fromfile;

Interface
Uses dos,crt,pictures;

type Data_array = array[0..820,1..7] of real; {maximum 800
datapoints:
1: Inlet air temperature
2: Outlet air temperature
3: Inlet water temperature
4: Outlet water temperature
5: Water flow
6: Air flow
7: Control signal)

type Parameters = record {model parameters}
date: string;
a: real; b: real; c: real; d: real; e: real;
f: real; g: real; h: real; j: real;
end;

type Information = record {miscelaneous data)
Filename: string;
Datatype: integer; {0: facility, 1: from file)
Datapoints: integer; (number of datapoints)
Textfile: integer; (write to text file ? 0: no, 1: yes)
Transducer: integer; {0: venturi, 1: pitot tube, 2: hot
wire anemometer)
PID: record {PID algorithm, Ki, Kp, Td)
alg:integer; Ki: real; Kp: real; Td: real; end;
(PID alg 0: open loop
1: interacting rectangular
2: non-interacting velocity
3: constant
4: step
5: self tune})
Newparam: integer; {calculate new model parameters ? 0:
no, 1l: yes)
Setpoint: real;
Steadystate: integer; {(find steady state before beginning
test? 0: no, 1l: yes)
Upsets: record
Run: integer; (run upsets ? 0: no, 1l: yes})

128

Double: integer; {adjust water flow after upset)
Damperon: integer; {close damper}
Damperoff: integer; {open damper}
Heaterson: integer; {turn 15kw heaters on)
Heatersoff: integer; (turn 15kw heaters off}
Coldwateron: integer; {add cold water to system)
Coldwateroff: integer; {turn cold water off)
Setpointon: integer; {raise sestpoint})
Setpointoff: integer; {lower setpoint)
Setpointsize: real; (size of setpoint error)
Wtrflowhigh: integer; {(in PID alg 4, increase water
flow}
Wtrflowlow: integer; {in PID alg 4, decrease water
flow)
end;
Paramselect: integer; {parameter set used in test)
Error model_ measured: real; (average error between measured
outlet air temperature and calculated outlet air
temperature}
Error_setpoint_measured: real; {average error between
setpoint and maeasured outlet air temperature)}
Error_setpoint_model: real; {average error between setpoint
and calculated outlet air temperature)
end;

procedure Datafromfile(Filename:string; var Stop: integer);

Const max_buffer = 1000;
GPM_to_Kgps = 0.06296382; {conversion for water flow,
gallons per
minute to kilograms per second}
FPM_to _kgps = 0.001221041; {conversion for air flow, feet

per second
to kilograms per second)

var P: Parameters;
: Information;

K,J: integer; {counters)

Sum_error: real; (setpoint - measured outlet air
temperature)

Kc,Kr,Ks: real; (PID constants from PID alg 5)

Filename: string;

CO, CO_1 : real; {control signal, last control signal)}

New_error, 0ld_error,

0l1d_old_error: real; {setpoint - measured outlet air
temperature,

time0, time-1, time-2)
delay: integer; {time between datapoints)

Implementation 129

function XtoY(X,Y:real):real; {raise x to a power y}
var 2: real;
begin
if X = 0 then XtoY := 0
else begin
g := Y * 1n(X);
XtoY := exp(2):
end;
end;

procedure findfile(filename: string; var fileexists: integer);
{uses "findfirst" and "findnext" to determine if file exists)

var K : integer;
fileinfo : searchrec;
lastfile : string;
begin

fileexists := 1; {set boolean to affirmative}
findfirst ('\THESIS\DATA*.*',anyfile,fileinfo);
if fileinfo.name <> filename then begin {(if first file in
directory is not
looked for file,
continue}
repeat
findnext (fileinfo); {check each file for filename}
if lastfile = fileinfo.name then
fileexists := 0; (if file found set boolean to negative)
lastfile := fileinfo.name;
until (fileinfo.name = filename) or (fileexists = 0);
end;
end; (findfile)

procedure equals(Upsettime,Upsettimeoff: integer;
var equal:boolean; var Upseton,Upsetoff:
integer) ;
(is time within +- delay of upset time)
begin
if (K * delay > Upsettime - (delay + 1))
and (K * delay < Upsettime + (delay - 1)) then
equal := true
else
equal := false;
Upseton := ROUND(Upsettime/delay):;
Upsetoff := ROUND(Upsettimeoff/delay) ;
end;

(**
*************) 130

procedure Datafromfile;
var Data : Data_array:
mv : real;

procedure PID;

const max_buffer = 1000;

var last_volts, volts:
1sv,hsv,1llim,hlim,up:
err_code:

{this procedure does everything}

array[0..1] of real;
real;
integer;

procedure calc_pid;

const alphal = 0.0165; alpha2
alpha4 = -0.1778;
aot_count_real, aot_count_real old, PID calc: real;
aot_count: integer; {control signal in bytes)

Mdotwbar : real;

Mwcount : byte;

alphal, alpha2, alpha3, alphad :

Numwavg : integer;

Kpmult : real;

-0.1755; alpha3 0.5757;

var

real;

begin
if (CO < 1496) and (CO > 610) then
sum_error := sum_error + old_error;

{anti-windup}
{deg C}

Case I.PID.alg of

1:
begin { degC * Kp(5V/degC))}
pid_calc := 610 + (I.PID.Kp*409.5*(Data(K,2] -
I.Setpoint));
aot_count_real := pid_calc;
end;
2
begin
Numwavg := round(I.PID.Ki);
Kpmult := I.PID.Td:
Mdotwbar := 0;
If K > numwavg then
begin

For mwcount := 1 to numwavg do mdotwbar := mdotwbar
+ (Data[K-mwcount,5});)
mdotwbar := mdotwbar/numwavg;
end
Else Mdotwbar := Data[K-1,5]:;
I.PID.Kp := (alphal*mdotwbar*mdotwbar*mdotwbar)
+ (alpha2*mdotwbar*mdotwbar)
+ (alpha3*mdotwbar)

131

+ alpha4;
I.PID.Kp := I.PID.Kp * Kpmult;
writeln(I.PID.Kp:2:2);
pid_calc := 610 + (409.5 * I,PID.Kp * new _error);
aot_count_real := pid_calc;
end;

3: {constant output)
aot_count_real := 1350.0;
{PID alg 4 is in the upset procedure)

5:
begin
pid_calc := Kc*new_error;
aot_count_real:= PID calc;
if (aot_count_real > 610) and (aot_count_real < 1496)
then
aot_count_real := aot_count_real_old + aot_count_real;
aot_count_real_old:=aot_count_real;
end;

end; ({Case}

if (aot_count_real > 4095) or (aot_count_real < 0) then
begin
if aot_count_real > 4095 then aot_count _real := 4095;
if aot count real < 0 then aot_ count real := 0;
if aot count real_old > 4095 then aot count_real_old := 4095;
if aot count real old < 0 then aot count real old = 0;
end;
aot_count := round(aot_count_real); { declared in this
procedure)}
CO_1 := CO;
CO := aot_count; {uses PID calculation, not CO of
actual test)
end;

begin
New_error := = (I.Setpoint - Data[K,2}):
0ld_error := -(I.Setpoint - Data[K-1,2])
old_ _old_error := -(I.Setpoint - Data[K-2
lsv ¢= 0; hsv :=5; 1llim := 0; hlim :
up := 5;
calc_pid;
If CO_1 < 660 then CO_1 := 660;
If CO_1 > 1440 then CO_1 := 1440;
mv := (-4.1290589864E+01) + ((3.0932439193E-01) * CO_1) +
((-3.2681341813E-04) * XtoY(CO_1,2))
+ ((9.5607316380E-08) * XtoY(CO 1,3));
Data[K,5] := 0.01267 + (0.11173 * mv); {gpm)

;
12])i
= 97

132

if DatafX,5] < 1.19 then Data[k,5] :
if pata[K,5] > 5.37 then Data(K,5] :
end; (procedure PID}

procedure upsets(Filename:string; J:integer; var stop:
integer);

var 2: string;
Z_val, code: integer;
Upseton, Upsetoff: integer;
Infofilename: string;
Infofile: file of Information:;
Paramfile: file of Parameters;
Upsetfile: file of integer;
Datachange: Integer; {size of change in data during
upsets)
M: integer;
empty: char;
equal: boolean;
fileexists: integer;
extension: string;
begin
if J = 1 then begin {initialize data only on the first pass}
‘findfile(filename+'.IN2',fileexists); {(determine which
information file to open}
if fileexists = 1 then begin
assign(Infofile, '\thesis\data\'+Filename+'.in2');
extension := '.IN2';
end
else begin
findfile(filename+'.IN1',fileexists);
if fileexists = 1 then begin
assign(infcfile, '\thesis\data\'+filename+'.inl"');
extension := ',IN1';
end
else begin
assign(infofile, '\thesis\data\'+filename+'.inf"');
extension := ',INF';
end;
end;
reset (Infofile); {(open information file)
read (Infofile,I):
close(Infofile);
assign(Paramfile, '\thesis\data\paramf.dat'):
reset (Paramfile); {open parameters file)
if I.Newparam = 1 then seek(Paramfile,filesize(Paramfile) -
1)
else seek(Paramfile,I.Paramselect); {(read parameters
selected in pidsimm)
read (Paramfile,P) ;
close(Paramfile) ;
{write selections to screen)

133

window(1,1,80,25); clrscr; drawbox(3,2,80,8);
gotoxy(5,4); write('The parameters selected for this test
are - '); 1
gotoxy(7,5): write(P.Date);
gotoxy(5,6); write('A: ',P.a:2:6,' B: ',P.b:2:6,' C:
',P.c:2:6, ' D: ',P.d:2:6);
gotoxy(5,7): write('E: ',P.e:2:6,' F: ',P.f:2:6,' G:
',P.g:2:6, ' H: ',P.h:2:6,' J: ',P.j:2:6); if I.Newparam
= 0 then
begin
drawbox(3,9,80,24);
gotoxy(5,10); write('The upsets from the file
\thesis\data\' ,I.Filename,extension,' are - '):
gotoxy(5,12); write('Transducer: ');
case I.Transducer of
0: write('Venturi'):;
1: write('Pitot tube');
2: write('Hot wire anemometer'):;
end;
gotoxy(5,13); write(‘'Setpoint is: ',I.Setpoint:2:0, !
degrees'); gotoxy(5,14); write('Steady state: '):;
if I.Steadystate = 1 then write('yes') else write('no");
gotoxy(5,15); write('Datatype: ');
if I.patatype = 1 then write('from file')
else write('from facility'):
write(' Datapoints: ',I.Datapoints,'
Textfile: ');
if I.Textfile = 1 then write('yes') else
write('no');
gotoxy(5,16); write('PID alg: '):
case I.PID.alg of
0: write('open loop'):;
1: write('interacting rectangular');
2: write('non-interacting velocity!');
3: write('constant');
4: write('step');
5: write('self tune');
end;
write(' Ki: ',I.PID.Ki
' Kp: ',I.PID.Kp
', I.PID.Td:2:2);
gotoxy(5,17); write('New parameters: ');
if I.Newparam = 1 then write('yes') else
write('no');
gotoxy(5,18); write('Run upsets: ');
if I.Upsets.run = 1 then write('yes') else
write('no');
write(' Valve upset: ');
if I.Upsets.double = 1 then write('yes')
else write('no');
gotoxy(5,19); write('Damperon: ',I.Upsets.Damperon,
' Damperoff: ',I.Upsets.Damperoff) ;

134

2:2,
2:2,' Td:

gotoxy(5,20); write('Heaters on: ',I.Upsets.Heaterson,
' Heaters off: ',I.Upsets.Heatersoff);
gotoxy(5,21); write('Cold wtr on: ',I.Upsets.Coldwateron,
' Cold wtr off:',I.Upset.Coldwateroff);
gotoxy(5,22); write('Setpoint up: ',I.Upsets.Setpointon,
' Setpoint down: ',I.Upsets.Setpointoff,
' Size: ',I.Upsets.Setpointsize:2:2,'
degrees');
gotoxy(5,23); write('Wtr flowhigh:',I.Upsets.Wtrflowhigh,
' Wtr flowlow: ',I.Upsets.Wtrflowlow);
end; ,
gotoxy(5,25); write('Enter 0 if this is incorrect(1l) - '):
{allow user to quit and correct inputs)
while keypressed do empty := readkey;
readln(2); if 2 <> '' then
begin
val(Z,Z_val,code);
stop := Z_val;
end
else stop := 1;
if stop = 0 then exit;
end; {first pass only}

equals(I.Upsets.Damperon,I.Upsets.Damperoff,equal,Upseton,Up
set off):;
if equal = true then
begin
for M := Upseton to Upsetoff do
Data{M,6] := Data[M,6] - 297; {reduce air flow to simulate
closed damper)
end;

equals(I.Upsets.Heaterson,I.Upsets.Heatersoff,equal,
Upseton, Upsetoff);
if equal = true then
begin (£fill inlet air temperature from file to simulate
heaters on and off) '
assign(Upsetfile, '\thesis\data\Heaters.ups'):;
reset (Upsetfile);
for M := Upseton to Upseton + 101 do begin
read (Upsetfile,Datachange); {read the 101 values for
increasing inlet air temperature)
Data(M,1] := Data[M,1] + Datachange;
end;
for M := Upseton + 102 to Upsetoff - 99 do
Data[M,1] := Data [M,1] + 15; {add constant change between
increase and decrease inlet air temperature)
repeat
read(Upsetfile,Datachange); {(read the 99 values for
decreasing inlet air temperature)
Data([M,1] := Data[M,1] + Datachange;
M:=M+ 1;

135

until EOF (Upsetfile):;
close(Upsetfile);
end;
equals (I.Upsets.Coldwateron,I.Upsets.Coldwateroff, equal,
Upseton,Upsetoff);
if equal = true then
begin
Upseton := ROUND(I.Upsets.Coldwateron/5):;
Upsetoff := ROUND(I.Upsets.Coldwateroff/5) ;
assign(Upsetfile, '\thesis\data\Coldwtr.ups'):;
reset (Upsetfile);
for M := Upseton to Upseton + 100 do begin
read (Upsetfile,Datachange); {read the 100 values for
decreasing inlet water temperature)
Data[M,3] := Data[M,3] + Datachange;
end;
for M := Upseton + 101 to Upsetoff - 100 do
Data[M,3] := Data [M,3] - 22; {fill constant change in
inlet water temperature between decrease and increase)
repeat
read (Upsetfile,Datachange); {read the 100 values for
increasing inlet water temperature)
Data[M,3] := Data[M,3] + Datachange;
M: =M+ 1;
until EOF (Upsetfile):;
close(Upsetfile);
end;
equals(I.Upsets.Setpointon,I.Upsets.Setpointoff,equal,
Upseton,Upsetoff) ;
if equal = true then {change setpoint)
I.Setpoint := I.Setpoint + I.Upsets.Setpointsize;
equals(I.Upsets.Setpointoff,I.Upsets.Setpointon,equal,
Upseton,Upsetoff);
if equal = true then

I.Setpoint := I.Setpoint - I.Upsets.Setpointsize;
end;

procedure Read_datafile;
var Readfile: file of real; (fill data array)
m: integer;
begin
write('Reading from '+Filename);
assign(readfile,Filename);
reset (readfile);
K := 0;
while ((not EOF(readfile)) and (K<820))do
begin
read (readfile,Data[K,1],Data[K,2],Data[K,3]),Data[K,4],
Data(K,5],Data[K,6],Data[K,7]);
if X > 0 then begin {check for and replace bad data)
if (Data[X,5) < 0.01) and (Data[K,2] < 20) then begin
136

for m := 1 to 7 do Data[K,m] := Data[K-1,m];
end;
end;
K=K+ 1;
if (K/40 - INT(K/40) < 0.10) and (K/40 - INT(K/40) > -0.10)

then
write('.');
end;
close(readfile);
I.Datapoints := K - 1;
writeln;
end;

procedure writedata(Write_to_screen:integer);
var Writefile: file of real;
begin
if Write_to_screen = 0 then begin
write('Writing to '+Filename);
assign(writefile,Filename):;
rewrite(writefile):;
for K := 0 to I.Datapoints do
begin
write(writefile,Data(K,1],Data{K,2],Data(K,3],Data(K, 4],

Data[K,5],Data[K,6],Data[K,7],Data(K,8],Data[K,9]):
if (K/40 - INT(K/40) < 0.10) and (K/40 - INT(K/40) >
-0.10) then
write('.');
end;
end
else
writeln((K*s5):2,' ',Data[K,1]:2:2,' !',Data(kK,2]:2:2,
' ',Data(K,3]}:2:2,' ',Data(K,4]):2:2,
* ,Data(K,5]):2:2,' !',Data(K,6]:2:2,
' ',Data[K,7]*4096:2:0,' ',Data(K,8]:2:2,
' ',Dbata[K,9]}:2:2):
if Write_to_screen = 0 then close(writefile);
writeln;
end; (procedure write_file)

procedure Wtr_out_calculation(a,b,c,d: real);
var MdotA, MdotW, Wtr_avg: real;
begin
MdotA := Data(K-1,6)*FPM_to_Kgps;
MdotW := Data([K-1,5]*GPM_to_Kgps;
Wtr_avg := (Data(K-1,3] + Data[K-1,4]) / 2:
Data[K,4] := Data[K-1,4) ‘
+ (a * MdotW * (Data(K-1,3] - Data[K=-1,4]))
+ (b * (Data[K-~1,1] - Wtr_avg))
+ (¢ * MdotW * (Data[K-1,1] - Wtr_avg))

137

+ (d * MdotA * (Data{K-1,1] - Wtr_avqg)):
end;

procedure Air out_calculation(e,f,qg,h,j: real);
var MdotA, MdotW, Wtr_avg: real;
begin
MdotA := Data[K,6]*FPM_to_Kgps:;
MdotW := Data[K,5]*GPM_to_Kgps:
Wtr_avg := (Data[K,3] + Data[K,4]) / 2:
Data[K+1,2] := Data[K,2]

+ (e * MdotA * (Data{K,1l]} - Data(kK,2]))
+ (f (Wtr_avg - Data([K,1]))

+ (g MdotW * (Wtr_avg - Data[K,1]))

+

+

*

*
(h * MdotA * (Wtr_avg - Data[K,1]))
(j * (Data[K+1,1]-Data(K,1])):
end;

procedure make_predictions;
begin
Filename := '\thesis\data\'+I.Filename+'.prd';
write('Calculating'):
for K := 2 to I.Datapoints do
begin
if I.Upsets.Run = 1 then upsets(Filename,J,stop):;
if I.PID.alg <> 0 then PID;
Wtr_out_calculation(P.a,P.b,P.c,P.d);
Air out_calculation(P.e,P.f,P.g,P.h,P.j);
if (K/40 - INT(K/40) < 0.10) and (K/40 - INT(K/40) > -0.10)
then
write('.'):
end;
writeln;
writedata(0);
end;

begin {procedure Data_from_file)
J := 1; upsets(Filename,J,stop); J := 0;
if stop <> 0 then

begin
Sum_error := 0;
Filename := '\thesis\data\'+I.Filename+'.dat';
read_datafile;
make_predictions;
end;
end;
End.

138

"DRAW.TPU"

{$R+) {Range checking off}

{$B+) {Boolean complete evaluation on)

{$S5+) {Stack checking on}

{SI+) {I/0 checking on}

($M 65500,16384,655360) {Turbo 3 default stack and heap}
{ stack heapmin heapmax)}

UNIT draw;

Interface
uses dos,crt,gdriver,gkernel;

procedure plotdata(Paramselect: integer; Filename: string):

type Data_array = array[0..820,1..7] of real; {maximum 800
datapoints:

1: Inlet air temperature

2: Outlet air temperature

3: Inlet water temperature

4: Outlet water temperature

5: Water flow

6: Air flow

7: Control signal}

type Parameters = reccrd {model parameters)}
date: string:
a: real; b: real; c: real; d: real; e: real;
f: real; g: real; h: real; j: real;
end;

type Information = record ({miscelaneous data)}
Filename: string;
Datatype: integer; {0: facility, 1: from file)
Datapoints: integer; {(number of datapoints)
Textfile: integer; {write to text file ? 0: no, 1l: yes)
Transducer: integer; (0: venturi, 1: pitot tube, 2: hot
wire anemometer)
PID: record {PID algorithm, Ki, Kp, Td)
alg:integer; Ki: real; Kp: real; Td: real; end;
{PID alg O0: open loop
1: interacting rectangular
2: non-interacting velocity
3: constant
4: step
5: self tune)
Newparam: integer; {calculate new model parameters ? 0:
no, 1: yes}
Setpoint: real;
Steadystate: integer; {find steady state before beginning
test? 0: no, 1: yes) 139

148

Upsets: record
Run: integer; {run upsets ? 0: no, 1: yes}
Double: integer; {adjust water flow after upset)
Damperon: integer; {close damper)
Damperoff: integer; {open damper)
Heaterson: integer; {turn 15kw heaters on)
Heatersoff: integer; {turn 15kw heaters off)
Coldwateron: integer; {add cold water to system)
Coldwateroff: integer; {turn cold water off}
Setpointon: integer; {raise sestpoint)
Setpointoff: integer; {lower setpoint)
Setpointsize: real; {size of setpoint error)
Wtrflowhigh: integer; {(in PID alg 4, increase water
flow}
Wtrflowlow: integer; (in PID alg 4, decrease water
flow)
end;
Paramselect: integer; (parameter set used in test)
Error_model_measured: real; (average error between measured
outlet air temperature and calculated outlet air
temperature}
Error_setpoint_measured: real; {average error between
setpoint and measured outlet air temperature)
Error_setpoint model: real; {average error between setpoint
and calculated outlet air temperature)
end;

{global declarations)
var I: Information;
P: Parameters;
Infofile: file of Information;
Paramfile: file of Parameters;
Filename: string;
Max_temp, Min_temp, Max_time: real; {boudaries for graph}
K,Time_limit: integer;
Data: Data_array:

Implementation

procedure findfile(filename: string; var fileexists: integer):;
{uses "findfirst" and "findnext" to determine if file exists)

var K ¢ integer;
fileinfo : searchrec;
lastfile : string;
begin
fileexists := 1; (set boolean to affirmative)

findfirst ('\THESIS\DATA*.*', anyfile,fileinfo);

if fileinfo.name <> filename then begin (if first file in
directory is not looked for file, continue)

repeat 140

findnext (fileinfo); {check each file for filename)
if lastfile = fileinfo.name then
fileexists := 0; {if file found set boolean to negative}
lastfile := fileinfo.name;
until (fileinfo.name = filename) or (fileexists = 0);
end;
end; {(findfile)

procedure totext;

{rewrite data and predicted files declared real to files in
ASCII)

type Data_array = array(0..820,1..9] of real; {maximum 800
datapoints:

1: Inlet air temperature

2: Outlet air temperature

3: Inlet water temperature

4: Outlet water temperature
5: Water flow

6: Air flow

7: Control signal

8: prediction data

9: prediction data)

var readfile: file of real;
Writefile: text;
Z: integer;
Data: Data_array:
Time: real;

begin
Filename := f'\thesis\data\'+I.Filename+'.dat';
write('Reading from '+Filename);
assign(Readfile,Filename) ;
reset (Readfile); {open data file}
Z := 03
repeat {fill data array from data file)
read (Readfile,Data(Z,1],Data(Z,2],Data(2,3],Datafz,4],
Data(Z,5],Data[Z,6],Data[Z,7]);
Z =2 + 1;
if (Z/40 - INT(2/40) > -0.10) and (Z/40 - INT(Z/40) < 0.10)
then
write('.'):; (write dots to screen)
until EOF(readfile);

close(readfile) ;

writeln;

I.Datapoints := 2 - 1; (determine numberof datapoints acutally
in file)

Filename := '\thesis\data\'+I.Filename+'.dtx"';

write('writing to '+Filename);
141

assign(writefile,Filename);

rewrite(writefile); {(open data text file)

{write parameters and information to data text file}

writeln(writefile, 'Parameters used');

writeln(writefile,'A: ',P.a:2:6,' B: ',P.b:2:6,' C:
',P.c:2:6,

' D: ',P.4:2:6,' E: ',P.e:2:6,' F: ',P.f:2:6,' G:

',P.g:2:6,

' H: ',P.h:2:6' J: ',P.j:2:2);
writeln(writefile, 'PID alg: ',I.PID.alqg,' Ki: ',I.PID.Ki:2:2,!

Kp: ',I.PID.Kp:2:2,

' Td: ',I.PID.Td:2:2);
writeln(writefile, 'Setpoint: ',I.Setpoint:2:0);
writeln(writefile, 'Damper on: ',I.Upsets.Damperon,

' Damper off: ',I.Upsets.Damperoff):
writeln(writefile, 'Heaters on: ',I.Upsets.Heaterson,

' Heaters off: ',I.Upsets.Heatersoff);
writeln(writefile, 'Cold water on: ',I.Upsets.Coldwateron,

' Cold water off: ',I.upsets.Coldwateroff):
writeln(writefile, 'Setpoint on: ',I.Upsets.Setpointon,

' Setpoint off: ',I.Upsets.Setpointoff,

' Setpoint size: ',I.Upsets.Setpointsize:2:0);
writeln(writefile,'Water flow set low at:

', I.Upsets.Wtrflowlow) ;
writeln(writefile, 'Water flow set high at:

', I.Upsets.Wtrflowhigh) ;
for 2 := 0 to I.Datapoints do begin {write data to data text
file)

writeln(writefile, (2*5):2,' ',Data{2,1]:2:2,"
',Data[2,2]:2:2,"' ',
Data(2,3]:2:2,' ',Data(Z2,4]:2:2,' ',Data[2,5]:2:2,"' ',
Data(Zz,6]:2:2,' ',Data[2,7]:2:2);
if (2/40 - INT(Z/40) > -0.10) and (2/40 - INT(Z/40) < 0.10)
then
write('.");
end;
close(writefile);
writeln;

Filename := '\thesis\data\'+I.Filename+'.prd’';
write('reading from '+Filename);
assign(readfile,Filename);
reset(readfile); {open predictions file)
Z = 0;
repeat (f£ill data array from predictions file)

read (readfile,Data(%,1]),Data(Z%,2]),Data[Z,3],Data(z,4],

Data[2,5],Data[Z,6],Data[Z,7],Data[Z,8],Data[Z,9]):
2 =2 + 1;
if (2/40 ~ INT(Z/40) > ~0.10) and (2/40 - INT(Z/40) < 0.10)
then
write('.'); (draw dots to screen)

142

until EOF(readfile):;

close(readfile);

writeln;

I.Datapoints := 2 - 1; {determine number of datapoints actually
in file)

Filename := '\thesis\data\'+I.Filename+'.ptx"';
write('writing to '+Filename):
assign(writefile,Filename);
rewrite(writefile); {(open predictions text file)
{write parameters, information, and average errors to
predictions text file)
writeln(writefile, 'Parameters used');
writeln(writefile,'A: ',P.a:2:6,' B: ',P.b:2:6,' C:
', P.c:2:6,"! D: ',P.d:2:6,
'* E: ',P.e:2:6,' F: ',P.f:2:6,' G: ',P.g:2:6,' H:
',P.h:2:6);
writeln(writefile, 'PID alg: ',I.PID.alg,' Ki: !',I.PID.Ki:2:2,
Kp: ',I.PID.Kp:2:2,
' Td: ',I.PID.Td:2:2);
writeln(writefile, 'Setpoint: !',I.Setpoint:2:0);
writeln(writefile, 'Damper on: ',I.Upsets.Damperon,
' Damper off: ',I.Upsets.Damperoff);
writeln(writefile, 'Heaters on: ',I.Upsets.Heaterson,
' Heaters off: ',I.Upsets.Heatersoff);
writeln(writefile, 'Cold water on: ',I.Upsets.Coldwateron,
' Cold water off: ',I.upsets.Coldwateroff);
writeln(writefile, 'Setpoint on: ',I.Upsets.Setpointon,
' Setpoint off: ',I.Upsets.Setpointoff,
! Setpoint size: ',I.Upsets.Setpointsize:2:0);
writeln(writefile, fWater flow set low at:
', I.Upsets.Wtrflowlow) ;
writeln(writefile, 'Water flow set high at:
', I.Upsets.Wtrflowhigh);
writeln(writefile, 'Sum error model measured:
', I.Error_model_measured:2:2);
writeln(writefile, 'Sum error setpoint measured:
', I.Error_setpoint_measured:2:2);
writeln(writefile, 'Sum error setpoint model:
', I.Error_setpoint_model:2:2);
for Z := 0 to I.Datapoints do begin {write data to predictions
text file, datapoints 0 and 1 only have 7 values)
if 2 <= 1 then
wrlteln(wrlteflle (Z*S) 2,' ',Data[Z,1]:2:2,"
',Data(Zz,2]):2:2,

Data{Z, 3] 2.-,' ',Data[Z,4]:2:2,' ',Dataz,5]):2:2,"' ',
Data(Z,6]:2:2,' ',Data[Z,7]:2:2(,"'
',Data[Z,S]:Z:z,Data[z,9]:2:2))

else
wrlteln(wrlteflle (Z*S) 2,' ',Data(z,1]):2:2,
',Data(Z,2]:2:2,
Data{Zz, 3] 2:2," ,Data[z,4]:2:2,' ',Data[z,5]):2:2,"' !

143

!

Data([Z,6]:2:2,"' ',Data(z,7]:2:2,"' ',Data[Z,8]:2:2,
',Data([2,9]:2:2);
if (Z2/40 - INT(Z/40) > -0.10) and (2/40 - INT(Z/40) < 0.10)
then
write('.'):

end;

close(writefile);

writeln;
end; (totext)

procedure calc_error;

{read data from data and predictions files into arrays,

calculate average errors, and save data for plotting)

var Readfile, Readfile2, writefile, writefile2: file of real;
Infofile: file of Information;
Time,Air_in,Wtr_in,Wtr_out,Wtr_flow,Air flow,CS: real; {data
from data file)
Time2,Air_in2,Wtr_in2,Wtr_out2,Wtr_flow2,Air flow2,CS2:

real; {data from predictions file)
More: array([0..820,1..8] of real; {(array for variables other
outlet air temperature in data and prediction files

X, write_dot: real;

error_model_measured, error_setpoint_measured,

error setp01nt model' real; (see global type declarations
for detail)

begin

clrscr;

Filename := '\thesis\data\'+I.Filename+'.dat';

writeln('Reading from '+Filename+' &');

assign(Readfile,Filename) ;

Filename := '\thesis\data\'+I.Filename+'.prd’;

write('Reading from '+Filename);

assign(Readfile2,Filename);

reset (Readfile); (open data file)

reset (Readfile2); {open predictions file)

K := 0;

{Data(K,1] is outlet air temperature in data,

Data(K,2] is outlet air temperature in predictions)

{(read first datapoint from data and predictions)

read (Readfile,More{K,1],Data[K,1],More[K,2],More[K, 3],
More(K, 4),More[K,5] ,More([K,6]){,More(K,7],More{K,8]}):

read (Readfile2,More(K,1],Data[K,2],More[K,2],More[K,3],
More(K, 4] ,More[K,5],More(K,6],More{K,7],More([K,8]);

if Data([0,1] >= Data[0,2] then Max temp = Data[0,1]

else Max_temp := Data[0,2]; {initialize max_temp)
if Data(0,1] <= Data(0,2] then Min_temp := Data[0,1]
else Min_temp := Data[0,2); (initialize min_temp)

I.Error_model_measured := 0; {initialize errors)
144

I.Error_setpoint_measured := 0;
I.Error_setpoint_model := 0;
repeat {fill data and more arrays)
K :=K+ 1;
read (Readfile,More([K,1],Data{K,1],More[K,2], ,More(K,3],
More([K,4],More[K,5],More([K,6]{,More{K,7],More[K,8]}):
read (Readfile2,More[K,1],Data[K,2], More([K,2],More(K,3],
More(K,4],More(K,5],More[K, 6] ,More[K,7],More(K,8]):
if Dpata[K,1] > Max_temp then Max_temp := Data(K,1]:
if pata(K,2] > Max_temp then Max_temp := Data(K,2];
if Data([K,1] < Min_temp then Min_temp := Data(K,1]:;
if Data([K,2] < Min_temp then Min_temp := Data(K,2];

Error_model _measured :=
Error setp01nt measured
Error_setpoint_model :=

ABS (Data[K,1] - Data[K,2]):
:= ABS(Data[K,1] - I.Setpoint);
ABS(Data(K,2] - I.Setpoint);

I.Error_model_measured :=
I.Error_model_measured + Error_model measured;
I.Error_setpoint measured :=

I.Error_setpoint_measured + Error_setpoint_ measured;

I.Error_setpoint_model :=
I.Error_setpoint_model + Error_setpoint model;
if (K/40 - INT(K/40) > -0.10) and (K/40 - INT(K/40) < 0.10)
then write('.'); (write dots to screen)
until EOF(Readfile);
close(readfile);
close(readfile2);
I.Datapoints := K; {(determine datapoints in file)
{(finalize average errors)
I.Error_model_ measured := I.Error_model_measured/I.Datapoints;
I.Error_ setpoxnt measured :=
I.Error_setpoint_measured/I.Datapoints;
I.Error_setpoint model := I.Error_setpoint_model/I.Datapoints;
writeln;
{finalize borders for graph)
Max_time := (K * 5) + 5;
Max_temp Max_temp + 1;
Min_temp := Min_temp ~ 1;
Time_limit := ROUND((Max_time - 5) / 5);
{write parameters, information and average errors to screen)
writeln('a: ',P.a:2:6,' B: ',P.b:2:6,' C: ',P.c:2:6,' D:
‘',p.d:2:6, ' E: ',P.e:2:6,' F: ',P.f:2:6,' G:
', P.g:2:6,' H: ',P.h:2:6);
writeln('PID alg: ',I.PID.alg,' Ki: ',I.PID.Ki:2:2,' Kp:
', I.PID.Kp:2:2,
' Td: ',I.PID.Td:2:2);
writeln('Setpoint: ',I.Setpoint:2:0);
writeln('Damper on: !',I.Upsets.Damperon,
' Damper off: ',I.Upsets.Damperoff);
writeln('Heaters on: ',I.Upsets.Heaterson,
' Heaters off: ',I.Upsets.Heatersoff);
writeln('Cold water on: ',I.Upsets.Coldwateron,
' Cold water off: ',I.upsets.Coldwateroff):

145

writeln('Setpoint on: ',I.Upsets.Setpointon,

' Setpoint off: ',I.Upsets.Setpointoff,

' Setpoint size: ',I.Upsets.Setpointsize:2:0);
writeln('Water flow set low at: ',I.Upsets.Wtrflowlow):;
writeln('Water flow set high at: ',I.Upsets.Wtrflowhigh):;

writeln('Max time: ', ,Max_time:2:0,' Max temp: ',Max_temp:2:2,

! Min temp: ',Min_temp:2:2);
writeln('Sum error model measured:
', I.Error_model measured:2:2);
writeln('Sum error setpoint measured:
', I.Error_setpoint_measured:2:2);
writeln('sum error setpoint model:
', I1.Error_setpoint model:2:2);
assign(infofile, '\thesis\data\'+I.Filename+'.in2"');
rewrite(infofile); {open information file})
write(infofile,I); {(write average errors to information file})
close(infofile);
end; {calc_error)

procedure plot_data;
{(draw graph and plot outlet air temperature in data and
predictions)
var X: real;

K: integer;

S,amount_str: string;

Sa,Sb,Ssc,sd,Se,Sf,Sg,Sh: string; {values converted to
strings)

begin
initgraphic;

defineworld(1,0,Max_temp,Max_time,Min_temp):
definewindow(1,6,0,79,150); {(window 1 is graph})
selectworld(1l):

selectwindow(1) ;
drawline(0,Min_temp,Max_time,Min_temp); (draw axis)
drawline(0,0,0,Max_tenp) ;

defineworld(2,0,10,Max_time,0):;
definewindow(2,6,150,79,160); (window 2 is X axis)
selectworld(2):;
selectwindow(2) ;
X := Max_time / 5;
for K := 1 to 5 do begin {write tick marks and axis numbers)
drawline(X * X,7,X * K,10);
str(K*X:2:0,8);
drawtextw ((X*K)-Max_time/25,5,1,8);
end;

defineworld(3,0,Max_temp,10,Min_temp) ;
definewindow(3,0,0,5,150); (window 3 is Y axis)
146

selectworld(3):;

selectwindow(3) ;

X := (Max_temp - Min_temp) / 5;

for K := 1 to 5 do begin {write tick marks and axis numbers)
drawline(9, (X*K) + Min_temp,11, (X*K) + Min_temp):
str((X*K)+Min_temp:2:0,S);
drawtextw (5, (X*K)+Min_temp-0.1,1,S):

end;

defineworld(4,0,0,100,29);
definewindow(4,6,160,79,189); {window 4 is information}
selectworld(4):;
selectwindow(4) ;
drawborder:;
{write upsets, average errors, files and parameters used)
str(I.Setpoint:4:0,58a);
drawtextw(1l,2,1, 'Setpoint: '+Sa):;
str(I.Upsets.Damperon:4,Sa); str (I.Upsets.Damperoff:4,Sb);
drawtextw(1,8,1, 'Damper on: ‘'+Sa+' Damper off: '+Sb);
str(I.Upsets.Heaterson:4,S8a); str (I.Upsets.Heatersoff:4,Sb):;
drawtextw(1,15,1, 'Heaters on: '+Sa+' Heaters off: '+Sb);
str(I.Upsets.Coldwateron:4,Sa); str
(I.Upsets.Coldwateroff:4,Sb);
drawtextw(40,15,1, 'Cold water on: '+Sa+' Cold water off:
'+Sb) ;

str(I.Upsets.Setpointon:4,Sa); str (I.Upsets.Setpointoff:4,Sb);
str(I.Upsets.Setpointsize:4:0,Sc);
drawtextw(25,2,1, 'Setpoint on: '+Sa+' Setpoint off: ‘'+Sb+

' Setpoint size: '+Sc);
str(I.Upsets.Wtrflowlow:5,Sa); str(I.Upsets.Wtrflowhigh:5,8b):;
drawtextw(40,8,1, 'Water flow set low at: '+Sa+

! Water flow set high at: '+Sb):
str(I.error_model_ measured:5:2,Sa);
str(I.error_setpoint_measured:5:2,Sb);
str(I.error_setpoint model:5:2,Sc);
drawtextw(1,23,1, 'Err model meas: '+Sa+

' Err spt meas: '+Sb+

' Err spt model: '+Sc);
drawtextw(67,23,1,'File: ‘+I.Filename+' Param: '+P.Date):;

selectworld(1l);

selectwindow(1) ;

{draw lines, and labels for upsets)
if I.Upsets.Damperon > 0 then

drawline(I.Upsets.Damperon,Min_temp+1,I.Upsets.Damperon,Max_temp-
1); if I.Upsets.Damperoff > 0 then

drawline(I.Upsets.Damperoff,Min_temp+1,I.Upsets.Damperoff,Max_tem
p-1); if I.Upsets.Heaterson > 0 then

147

drawline(I.Upsets.Heaterson,Min_ temp+l,I.Upsets.Heaterson,Max_tem
p-1); if I.Upsets.Heatersoff > 0 then

drawline(I.Upsets.Heatersoff,Min_temp+1,I.Upsets.Heatersoff,Max_t
emp-1); if I.Upsets.Coldwateron > 0 then

drawline(I.Upsets.Coldwateron,Min_temp+1,I.Upsets.Coldwateron,Max
_temp-1); if I.Upsets.Coldwateroff > 0 then

drawline(I.Upsets.Coldwateroff, Min_temp+l,I.Upsets.Coldwateroff,M
ax_temp~1); if I.Upsets.Setpointon > 0 then

drawline(I.Upsets.Setpointon,Min_temp+1,I.Upsets.Setpointon,Max_t
emp-1); if I.Upsets.Setpointoff > 0 then

drawline(I.Upsets.Setpointoff,Min_temp+1,I.Upsets.Setpointoff,Max
_temp-1); if I.PID.alg = 4 then
begin if I.Upsets.Wtrflowlow > 0 then

drawline(I.Upsets.Wtrflowlow,Min_temp+1,I.Upsets.Wtrflowlow,Max_t
emp-1); if I.Upsets.Wtrflowhigh > 0 then

drawline(I.Upsets.Wtrflowhigh,Min_temp+1,I.Upsets.Wtrflowhigh,Max
_temp-1);
end;
Time_limit := ROUND((Max_time - 5) / 5);
for K := 1 to Time_limit do begin
drawline((K*5) - 5,Data{K-1,1], (K*5),Data(K,1]); {draw line
for measured outlet air temperature)
{drawline((K*5) - 5,Data([K-1,2], (K*5),Data(K,2]) ;)
drawtextw (K*5,Data[K,2],2,chr(27)+'1'); {(draw + for predicted
outlet air temperature)
end;
savescreen('\thesis\data\'+I.Filename+'.scr');
end; {(plot_data)

procedure Plotdata:;

‘main program}

var Infofilename: string;
fileexists: integer; (boolean for findfile)
extension: string; {extension for filename)

148

Begin
window(1,1,80,25); {use whole screen}
clrscr;
{find which information file exists,
* ,IN2: predicted data exits
* ,IN1: predicted data does not exist
* INF: data taken before August, 1989}
findfile(filename+'.IN2',fileexists);
if fileexists = 1 then begin
assign(Infofile, '\thesis\data\'+Filename+'.in2');
extension := '.IN2';
end
else begin
findfile(filename+'.IN1',fileexists):
if fileexists = 1 then begin
assign(infofile, '\thesis\data\'+filename+'.inl');
extension := '.IN1';
end
else begin
assign(infofile, '\thesis\data\'+filename+'.inf"');
extension := '.INF!';
end;
end;
reset (Infofile); {open information file})
read (Infofile,I);
close(Infofile);
Filename := '\thesis\data\Paramf.dat';
writeln('reading from '+Filename);
assign(Paramfile,Filename);
reset (Paramfile); {open parameter file)
seek (Paramfile,Paramselect);
read (Paramfile,P);
close(Paramfile) ;
if I.Datatype 1 then Calc_error;
if I.Textfile 1 then Totext;
Plot_data;
end; {plotdata}

End.

149

"PICTURES.TPU"
UNIT pictures;

interface
uses dos,crt;
procedure drawbox(Left,Top,Right,Bottom:integer);

implementation

procedure drawbox;
var : integer;
X: integer;
begin
textcolor (random(6) + 1); {random colors}
gotoxy (Left, Top) ;
case mem[$B800 : 160*(Top-1l) + 2*(Left-1)] of {check for
corners use correct character to keep corner)
0..178,218 ¢ write(chr(218)):;
179,180,192,195 ¢ write(chr(195));

191,194,196 write(chr(194));
193,197,217 write(chr(197)):
end;

for J := Left + 1 to Right - 1 do begin
if (mem[$B800 : 160%(Top-1) + 2*%(J-1)]
or (mem{ $B800 : 160%(Top-1) + 2% (J-1)
then write(chr(196))
else write(chr(mem[$B800 : 160%*(Top-1l) + 2*(J-1)])):
end;
case mem[$B800 : 160*(Top-1) + 2*(Right-1)] of
0..178,191 : write(chr(191));
179,180,217 : write(chr(180));

= 196)
] < 179)

192,193,195,197 write(chr(197));
194,196,218 write(chr(194));
end;
for J := Top + 1 to Bottom - 1 do begin
gotoxy (Left,J);
if (mem[$B800 : 160*(J-1) + 2*(Left-1)] <= 179)
then write(chr(179))
else write(chr(mem[$B800 : 160%(J-1) + 2*(Left-1l)])):
gotoxy(Right,J) ;
if (mem[$B800 : 160%(J-1) + 2*(Right-1)] <= 179)
then write(chr(179))
else write(chr(mem{ $B800 : 160%(J~-1) + 2*(Left~1)])):
end;
gotoxy (Left,Bottonm) ;
case mem{ $B800 : 160%(Bottom-~1) + 2%*(Left-1)] of

0..178,192 ¢ write(chr(192));
179,195,218 ¢ write(chr(195)):;
180,191,194,197 ¢ write(chr(197)):;
193,196,217 ¢ write(chr(193));

150

end;
for J := Left + 1 to Right -~ 1 do begin
if (mem[$B800 : 160%*(Bottom-1) + 2*(J-1)] =
or (mem[$B800 : 160*(Bottom-1) + 2*(J-1)]
then write(chr(196))
else write(chr(mem[$B800 : 160*(Bottom-1) + 2*(J-1)])):
end;
case mem[$B800 : 160%*(Bottom~-1) + 2*(Right-1)] of

196)
< 179)

0..178,217 : write(chr(217)):
179,180,191 : write(chr(180)):
192,193,196 : write(chr(193)):
194,195,197,218 : write(chr(197)):
end;
end;
End.

151

"PSSPSELF.PAS"

{SR+) {Range checking off}

{$B+) {Boolean complete evaluation on}

{$S+)} {Stack checking on}

{($I+) {I/0 checking on}

{$M 65500,16384,655360} {Turbo 3 default stack and heap)
{ stack heapmin heapmax)}

program Pssp (input,output); {11~-28-89)}
Uses Dos, Crt, gdriver, gkernel, Pictures;

type Parameters = record
date: string;
a: real; b: real; c: real; d: real;
e: real; f: real; g: real; h: real; j: real;
end;

arr3x3 = array[l..3,1..3] of real;
Data_array = array[0..200,1..7] of real;

Const
0.06296382;
0.001221041;

GPM_to_Kgps
FPM_to_kgps

var K, iterations, stop, Datapoints, bias, Time_limit: integer;

P: Parameters;

over_shoot : arr3x3;

kos : array[l1l..10,1..3] of real:;

Data : Data_array:

Kosfile, writefile : text;

Filename: string;

Sa,sb,Sc,sd,se,Sf,Sqg,Sh: string;

Kpstart, Kpend, Kpstep, setpointbase, setpointstep: real:

MdotWmiddle, Delta_water, Kp, Setpoint : real;

Max_temp, Min_temp, Max_time: real;

Perc0S, Watflow, K step, Sum_error: real;

Kc, Kr, Ks, CcO, CO_1, Mdothlus, MdotWminus: real;

x1, x2, setpointplus, setpointminus, Twssbase, Taossbase,

Twssminus, Taossminus, templ, temp2, Kv, setpointupper :
real;

function XtoY(X,Y:real):real;
var Z: real;
begin

if X = 0 then XtoY := 0
else begin

Z =Y % In(X): 152

XtoY := exp(2):
end;
end;

procedure PID;
procedure calc_pid;

var aot_count_real, aot_count_real_old, PID calc: real;
aot_count: integer;
Mdotwbar : real;
Mwcount : byte;

begin

pid_calc := Kp*(Data[K,2] ~ Setpoint);

aot_count_real := pid_calc;

aot_count := round(aot_count_real): { declared in this
procedure }

CO_1 := CO;

CO := aot_count; {uses PID calculation, not CO of
actual test)
end;
begin

calc_pid;

Data[K,5] := 3 + (Kv/0.06296382)*(CO_1 - 1164);

if pata[K,5] < 0.0 then Data[K,5] := 0.0;

if Data[K,5] > 5.37 then Data(K,5] := 5.37;
end; {procedure PID)

procedure Set_data;

var
m: integer;
begin
for m := 0 to 200 do
begin

Data[m,1] := 30; Data[m,2] := 50; Data(m,3] := 74;
Data[m,4] := 56;
Data[(m,5] := 3; Data[m,6] := 700; (base case)
if (m/40 - INT(m/40) < 0.10) and (m/40 - INT(m/40) > -0.10)
then
write('."');
end;
writeln;
end;

procedure Wtr_out_calculation(a,b,c,d: real);
var MdotA, MdotW, Wtr_avg: real;
begin
MdotA := Data[K-1,6]*FPM_to_Kgps;
MdotW := Data[K-~1,5]*GPM_to_Kgps;
Wtr_avg := (Data(K-1,3] + Data([K-1,4]) / 2:
Data(K,4] := Data[K-1,4] 153

end;

var MdotA, MdotW, Wtr_avg : real;
begin
MdotA := Data[K,6]*FPM_to_Kgps;
MdotW := Data[K,5]*GPM_to_Kgps:

Data[K+1,2] := Data[K,2]

gotoxy(1,25);

end;
procedure make_predictions;

begin
window(1,1,80,25);
write('Calculating'):;
K := 2;
datapoints := 200;

Data[0,7] := setpointbase;
Data[l,7] := setpointbase;
data[2,7] := setpointbase;
repeat

setpointstep;

Data[K,7] := setpoint;

PID;
Wtr_out_calculation(P.a,P.b,P.
Air_out_calculation(P.e,P.f,P.

K=K+ 1;
Until K = datapoints -1;
writeln;
end;

procedure Datafromfile;

begin (procedure Data_from_file)
writeln('Kp = ',Kp:2:2);

154

MdotW * (Data[K-1,3] - Data[K-1,4]))

+ *
+ (b * (Data[K-1,1] - Wtr_avqg))

+ (c * MdotW * (Data[K~-1,1] - Wtr_avqg))
+ (d *

MdotA * (Data{K-1,1] - Wtr_avg)):

procedure Air out_calculation(e,f,qg,h,j: real):;

Wtr_avg := (Data[(K,3] + Data(K,4]) / 2;

+ (e * MdotA * (Data[K,1] - Data[K,2]))
+ (£ * (Wtr_avg - DatafK,1}))

+ (g * MdotW * (Wtr_avg - Data[K,1]))

+ (h * MdotA * (Wtr_avg - Data(K,1]))
+ (j * (Data[K+1,1]-Data(K,1])):

textcolor (Random(6) + 1)
write('Tao pred = !',Data[K+1,2]:2:2);

If K <= 75 then setpoint := setpointbase;
If (K > 75) and (K <= 150) then

setpoint := setpointplus -

If K > 150 then setpoint := setpointbase;

MdotWplus := (MdotWmiddle + Delta_water)*0.06296382;

MdotWminus := (MdotWmiddle - Delta_water)*0.06296382;
Set_data;
x1 := ((P.b +
(P.c*MdotWplus)+(P.d*data[1,6]*%0.001221041)) *(data([1,1] -
(0.5*data[1,3])) + (P.a*MdotWplus#*data[l,3]))/
((P.a*MdotWplus) + (0.5*%(P.b + (P.c*MdotWplus) +
(P.d*data[1,6]*0.001221041))));
templ := (dataf1,3]+x1)/2:
temp2 := templ ~ data[l,1];
x2 := dataf[l,1] +
((P.£f/(P.e*data[1l,6]%0.001221041)) *temp2) +
(((P.g*MdotWplus)/(P.e*data[1,6]%0.001221041)) *temp2) +
((P.h/P.e) *temp2);
Twssbase := templ; Taossbase := x2;
setpointplus := x2 - (((((MdotWplus/0.0629) =~ 3)/-0.00702)+
1164 - bias)/Kp):
x1l := ((P.b +
(P.c*MdotWminus)+(P.d*data(1,6]%0.001221041)) *(data[1,1] -
(0.5*%*data[1,3])) + (P.a*MdotWminus*data(1,3]))/
((P.a*MdotWminus) + (0.5%(P.b + (P.c*MdotWminus) +
(P.d*data[1,6]*0.001221041))));
templ := (data[l,3]+x1)/2;
temp2 := templ - data[l,1];
x2 := data(1,1] +
((P.f/(P.e*data[1l,6]%0.001221041)) *temp2) +
(((P.g*MdotWminus)/ (P.e*data{1,6]*0.001221041)) *temp2) +
((P.h/P.e) *temp2) ;
Twssminus := x1; Taossminus := x2;
setpointminus := x2 =-(((((MdotWplus/0.0629) - 3)/~0.00702)+
1164 - bias)/Kp):
setpointbase := setpointplus;
setpointstep := setpointplus - setpointminus;
writeln('spbase ',setpointbase:2:2,' spstep
', setpointstep:2:2);
writeln('Twbar = ',Twssbase:2:2,' ', 'Taobar =
', Taosshase:2:2);
Delay(1000);
make_predictions;
end; (procedure Data_from_file)

procedure calc_error(var stop: integer):

var

Time,Air_in,Wtr_in,Wtr_out,Wtr_flow,Air_flow,CS: real;

Time2,Air _in2,Wtr_in2,Wtr_out2,Wtr_flow2,Air_flow2,CS2:
real;

X, write_dot: real;

Max_temp_posl, Min_temp posl, Max_temp_pos2, Min_temp_pos2:
real;

PercOs : real;

begin
J 155

clrscr;
K := 0;
Max_temp_posl := 0;
Min_temp_posl := 100;
if Data[0,1] >= Data[0,2] then Max_temp := Data{0,1]
else Max_temp := Data[0,2];
if Data[0,1] <= Data([0,2] then Min temp := Data[0,1]
else Min_temp := Data[0,2];
repeat
K := K+ 1;
if Data[K,2] > Max_temp then Max_temp := Data(K,2]:
if (Data[K,2] > Max_temp posl) and (K >=75) then
Max_temp_ posl := Data[K,2]};
if Dataf(K,2] < Min_temp then Min_temp := Data[K,2];
if (DPata[K,2] < Min_temp posl) and (K>=75) then Min_temp_posl
:= Dataf(K,2];
if (X/40 - INT(K/40) > -0.10) and (K/40 - INT(K/40) < 0.10)
then
write('."'):;
until K = 150;
writeln;
writeln('Min = ' ,Min_temp_posl:2:2)
writeln('Max = ' ,Max_temp_posl:2:2)
writeln('final = ',Data(k,2]:2:2);
If abs(Data[k,2]-Max_temp_posl) > 0.001 then
PercOS := 100*(Min_temp_posl -
Data[K,2])/(Data(K,2]-Data[75,2])
else PercOs := 0;
if (PercOS > 24) and (PercOS < 26) then stop := 1;
writeln(Percos);
str(Perc0S:5:2,5a);
if (Percos > 24.5) and (PercOS < 25.5) then stop := 1;
append (Kosfile) ;
write(KOSfile,Perc0S:12:2);
close(K0Sfile) ;
over_shoot[1l,1] :=
over_shoot[2,1] := Percos;
over_shoot(3,1] :=
Max_temp_pos2 := Data([150,2];
Min_temp_pos2 := Data([150,2];

repeat
K=K+ 1;
if pata[K,2) > Max_temp then Max_temp := Data[K,2];
if Data[K,2] > Max_temp pos2 then Max_temp_pos2 := Data(K,2]:

if Data[K,2] < Min_temp then Min_temp := Data[K,2]};
if Data[K,2] < Min_temp_pos2 then Min_temp_pos2 := Data(K,2];

if (K/40 ~ INT(K/40) > =-0.10) and (K/40 - INT(K/40) < 0.10)
then
write('.');
156

until K=198;

writeln;

writeln('Min ',Min_temp_pos2:2:2);

writeln('Max ! ,Max_temp_pos2:2:2);

writeln('final = ',Data[K,2]):2:2);

If (Data(K,2] - Min_temp_pos2) > 0.001 then

PercOS := 100*(Max_temp pos2 -~
Data[K,2])/(Data[K,2]-Data[150,2])

else PercOS := 0;

writeln(Percos) ;

if (PercOS > 24) and (PercOS < 26) then stop := 1;

str(Perc0S:5:2,8b) ;

append (KOsfile) ;

over_shoot(1,2] :

over_shoot([2,2] :

over_shoot[3,2] :

over_shoot(2,2};
Percos;
over_shoot{2,2] - over_shoot[1,2]:;

writeln(KOSfile,Perc0S:12:2,over_shoot([3,1]:8:2,over_shoot([3,2]:8
$2);
close(Kosfile);
writeln;
Max_time := (K * 5) + 5;
Max_temp := Max_temp + 1;
Min_temp := Min_temp - 1:;
Time_limit := ROUND((Max_time - 5) / 5):
Watflow := Data[75,3]:;
If (over_shoot[2,1] > 25) and (over_shoot([3,1] > 0) then
over_shoot[1,3] := - over_shoot(1,3]/2;
If (0 < over_shoot[3,1]) and (over_shoot[3,1] < 20) then
over_shoot(1,3] := 2%over_shoot[1,3];
If stop = 1 then begin write(char(7)); delay(2000); end;
end; {procedure calc error)

procedure plot_data;

var X: real;
K: integer;
S,amount_str: string;

begin
initgraphic;
defineworld(1,0,Max_temp,Max_time,Min_temp);
definewindow(1,6,0,79,150);
selectworld(l):
selectwindow(1);
drawline(0,Min_temp,Max_time,Min_temp) ;
drawllne(o 0,0,Max_temp);
def1neworld(2 0 10,Max_time,0);
definewindow (2, 6 150 79, 160),
selectworld(2):
selectwindow(2) ;
X := Max_time / 5;
for K := 1 to 5 do 157

begin
drawline(X * K,7,X * K,10);
str(K*X:2:0,S5):
drawtextw((X*K) -Max_time/25,5,1,S) ;
end;
defineworld(3,0,Max_temp,10,Min_temp) ;
definewindow(3,0,0,5,150);
selectworld(3):;
selectwindow(3);
X := (Max_temp - Min_temp) / 5;
for K := 1 to 5 do
begin
drawline (9, (X*K) + Min_temp,11, (X*K) + Min_temp):
str((X*K)+Min_temp:2:0,S);
drawtextw(5, (X*K)+Min_temp-0.1,1,S);
end;
defineworld(4,0,0,100,29);
definewindow(4,6,160,79,189);
selectworld(4):
selectwindow(4);
drawborder;
drawtextw(1,23,1, 'Percent 0S down '+Sa+
' Percent 0S up: '+Sb);
str(Watflow:2:2,Sc);
drawtextw(1,10,1, 'Water flow: '+Sc):;
str(Kp:2:2,Sc);
drawtextw(30,10,1, 'Kp: '+Sc);
selectworld(l):
selectwindow(1);
drawline(375,Min_temp+1,375,Max_temp-1);
drawline(750,Min_temp+1,750,Max_temp-1):;
Time_limit := ROUND((Max_time - 5) / 5);
for K := 1 to Time_limit do
begin
drawline ((K*5) - 5,Data[K-1,3]*%10, (K*5),Data[K,3]*10);
drawtextw (K*5,Data([K,2]),2,chr(27)+'1');
end;
end;

procedure Plotdata;

var Infofilename: string;
fileexists: integer;
extension: string;

Begin
stop := 0;
window(1,1,80,25);
clrscr;
assign(KoSfile, '\thesis\data\KoS.dat');
append (Kosfile) ;
write(KOSfile,Kp:8:2);
ClOSG(KOSfile) H 158

Calc_error(stop) ;
Plot_data;
delay(500) ;

if stop <> 1 then leavegraphic;
end;

Begin {main program)
P.a := 0.498213; P.b :
0.022166;
P.e := 0.152283; P.f := 0.022538; P.g := 0.078853; P.h
0.045770;
P.j := 0.210209; (from fit of 8-15cll})
{writeln('setpoint upper?'):;
readln(setpointupper) ;}
Kv := -0,000442;
writeln('bias'):
readln(bias);
clrscr;
gotoxy(3,6):; write('Kp start =
gotoxy(3,7): write('Kp end = '); readln(Kpend):;
gotoxy(3,8); write('Kp step = '); readln(Kpstep):
{gotoxy(3,9); write('Mw step (gpm) = '); readln(Delta_water);}

]
I

0.019103; P.c := 0.064465; P.d

'); readln(Kpstart):;

Delta_water := 0.05;
gotoxy(45,6); write('MdotW middle (GPM) = ');
readln(MdotWmiddle) ;
stop := 0;
iterations := 0;
Kp := Kpstart;
assign(KoSfile, '\thesis\data\Kos.dat');
rewrite (KOSfile) ;
writeln(Kosfile, 'Kp':8,'%$ 0S down':12,'% OS up':12, 'Water flow
':13,MdotWmiddle:6:2);
close(KOSfile);
fillchar (over_shoot,sizeof (over_shoot),0):
fillchar(Data,sizeof(data),0):
While (Kp <= Kpend) and (stop = 0) do begin
randomize;
textcolor(random(6) + 1);

gotoxy(3,6):; write('Kp start = ',Kpstart:2:2);
gotoxy(3,7): write('Kp end = ',Kpend:2:2);

gotoxy(3,8); write('Kp step = !',Kpstep:2:2);
gotoxy(45,6); write('Waterflow = ', MdotWmiddle:2:2,' ')
over_shoot[1,3] := Kpstep;

Datafromfile;

plotdata;

Kpstep := over_shoot[1,3];
Kp := Kp + Kpstep;
Delay(1000) ;

end; (while)

leavegraphic;

clrscr;

159

Kp := Kp - Kpstep;
writeln('Kp = ',Kp:2:2);
writeln('SPb = ',setpointbase:2:2);

writeln('%0S down = !',over_shoot(2,1]:2:2);
writeln('%0S up = ',over_shoot([2,2]:2:2);
writeln('del SP = ',setpointbase-setpointminus:2:2);

{Filename := '\thesis\data\simexl.dtx';
assign(writefile,filename);
rewrite(writefile):;
writeln(writefile,Kp:2:2,' !',over_shoot(2,1]:2:2,"
', over_shoot([2,2]:2:2);
For K := 0 to datapoints do writeln(writefile,K*5/60:2:2,"'
t,Data[K,2]:2:2,' ',Data[K,7]:2:2);
close(writefile) ;)
End.

160

"READMAT.PAS"

program Readmat;

{SN+)}

var matrixfile : file;
mattype,matrows,matcols,
matimag,matnamelength ¢ longint;
matname : byte;
matrix : array[1..10,1..500] of double;
I,J,K : integer;
matrixtext : text;

begin

assign(matrixfile, *\thesis\data\3gpmrl.mat'); {(file root locus

saved in)
reset (matrixfile,1);
for K := 1 to 1 do begin
blockread (matrixfile,mattype,4): writeln(mattype:5);
blockread (matrixfile,matrows,4); writeln(matrows:5);
blockread (matrixfile,matcols,4); writeln(matcols:5);
blockread (matrixfile,matimag,4); writeln(matimag:5);
blockread (matrixfile,matnamelength,4);
for I := 0 to matnamelength - 1 do begin
blockread (matrixfile,matname, 1) ;
write(chr(matname));

end;

writeln;

for I := 1 to matcols do begin
for J := 1 to matrows do begin

blockread (matrixfile,matrix([(I,J],8):
write(matrix(I,J]:10:4);
end;
end;
writeln;
if matimag = 1 then begin
for I := matcols + 1 to matcols * 2 do begin
for J := 1 to matrows do begin
blockread (matrixfile,matrix({I,J],8):
write(matrix[I,J):10:4);
end;
end;
writeln;
end;
end;
close(matrixfile);
assign(matrixtext, '\thesis\data\3gpm.sy'):; {ascii file}
rewrite (matrixtext):;
for J := 1 to matrows do begin
write(matrix[1,J3}:10:4);
if matrix[4,J] > 0 then write(' +') else
if matrix[4,J] = 0 then write(' ') else
161

write(' ~');

if matrix[4,J] = 0 then write('':7) else
write(ABS (matrix[4,J]):7:4):

if matrix[4,J] = O then write(' ') else
write('i'):

write(matrix[2,J]:10:4);

if matrix[5,J] > O then write(' +') else
if matrix[5,J] = 0 then write(' ') else

write(' =-');

if matrix[5,J] = 0 then write('':7) else
write (ABS(matrix([5,J])):7:4);

if matrix([5,J) = 0 then write(' ') else
write('i');

write(matrix([3,J]:10:4);

if matrix([6,J] > O then write(' +') else
if matrix[6,J] = 0 then write(' ') else

write(' -');

if matrix[6,J] = O then write('':7) else
write(ABS (matrix{6,J]):7:4);

if matrix[6,J] = 0 then writeln(' ') else
writeln('i'):

writeln(matrixtext,matrix(1,J]:9:4,matrix(4,J]:9:4,matrix[2,J]:9:

matrix[5,J):9:4,matrix(3,J):9:4,matrix(6,J]:9:4)

close(matrixtext):;

"DSTEST.M"

% An M-file to plot caculate closed loop trnasfer funcion
% and plot step response for the FRR3 model
clear
stopit = 0
nw=0.5
kp=input ('Kp to start with')
while (stopit "= 1)
clear kos y os
i=1
0s(1)=0
delos=10
incr=input('increment value')
while abs(os(j)-25)>0.5
!erase \matlab.313\under\param.tmp
fprintf('\matlab.313\under\param.tmp', '$9.3g %9.3g',kp,mw)

!test3

load \matlab.313\under\f_gfrr3.mat

y=dstep (num,den, 100)

ymax=max(v)

ymin=min(y)

os(j+1) = 100*(ymax-y(99))/(y(99)~-ymin)

kos(j+1,1)=kp

kos(j+1,2)=o0os(j+1)

if (os(j+1)>25) & (incr>0), incr=-incr/2, end

if (j>3),delos=os(j+1)-os(j), end

if ((delos<5) & (os(j+1)<20) & (j>3)), incr=2*incr, end
if ((delos<0) & (incr<0) & (os(j+1)<24)),incr=-incr/2, end

if abs(incr)<0.001, incr=2*incr, end
pause (1)
plot(y,'*')
pause (1)
kp=kp+incr
j=j+1
end
!beep
nw
kos
stopit=input ('do another 0 stop 1 ')
mw=mw+0.5
end
end

163

DISTRIBUTION

Chief of Engineers
ATTN: CEHEC-IM-LH (2)
ATTN: CEHEC-IM-LP (2)
ATTN: CERD-L

Fort Belvoir, VA 22060
ATTN: CECC-R

Defense Technical Info. Center 22304
ATTN: DTIC-FAB (2)

8
10/90

